Answer:
Explanation:
Particles in all states of matter are in constant motion and this is very rapid at room temperature. A rise in temperature increases the kinetic energy and speed of particles; it does not weaken the forces between them. The particles in solids vibrate about fixed positions; even at very low temperatures.
Even with all of these state changes, it is important to remember that the substance stays the same—it is still water, which consists of two hydrogen atoms and one oxygen atom. Changing states of matter are only physical changes; the chemical properties of the matter stays the same regardless of its physical state!
Answer:
1777.92 m/s
Explanation:
R = Radius of asteroid = 545 km
M = Mass of planet
g = Acceleration due to gravity = 2.9 m/s²
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Acceleration due to gravity is given by

The expression of escape velocity is given by

The escape speed is 1777.92 m/s
Answer and Explanation:
Parallax method is used for finding the distance of objects in space there are two types of parallax method that is stellar parallax and trigonometric parallax.The disadvantage of using parallax method is that it can can not reach so far in the Galaxy due to this reason parallax method is generally not used for measuring distance in galaxy.
We have here what is known as parallel combination of resistors.
Using the relation:

And then we can turn take the inverse to get the effective resistance.
Where r is the magnitude of the resistance offered by each resistor.
In this case we have,
(every term has an mho in the end)

To ger effective resistance take the inverse:
we get,

The potential difference is of 9V.
So the current flowing using ohm's law,
V = IR
will be, 0.0139 Amperes.
The energy carried by the incident light is

where h is the Planck constant and f is the frequency of the light. The threshold frequency is the frequency that corresponds to the minimum energy needed to eject the electrons from the metal, so if we substitute the threshold frequency in the formula, we get the minimum energy the light must have to eject the electrons: