Reflection helps designers to learn from their experiences, to integrate and co-ordinate different aspects of a design situation, to judge the progress of the design process, to evaluate interactions with the design context, and to plan suitable future design activities.
One notable disadvantage of liquid cooling over air cooling is that it is considerably costly to set up. Cooling fans are prevalent in the market, and this overabundance of supply means they are cheap. The components of a liquid cooling system can be expensive.
Answer:
835,175.68W
Explanation:
Calculation to determine the required power input to the pump
First step is to calculate the power needed
Using this formula
P=V*p*g*h
Where,
P represent power
V represent Volume flow rate =0.3 m³/s
p represent brine density=1050 kg/m³
g represent gravity=9.81m/s²
h represent height=200m
Let plug in the formula
P=0.3 m³/s *1050 kg/m³*9.81m/s² *200m
P=618,030 W
Now let calculate the required power input to the pump
Using this formula
Required power input=P/μ
Where,
P represent power=618,030 W
μ represent pump efficiency=74%
Let plug in the formula
Required power input=618,030W/0.74
Required power input=835,175.68W
Therefore the required power input to the pump will be 835,175.68W
Answer:
14.506°C
Explanation:
Given data :
flow rate of water been cooled = 0.011 m^3/s
inlet temp = 30°C + 273 = 303 k
cooling medium temperature = 6°C + 273 = 279 k
flow rate of cooling medium = 0.02 m^3/s
Determine the outlet temperature
we can determine the outlet temperature by applying the relation below
Heat gained by cooling medium = Heat lost by water
= ( Mcp ( To - 6 ) = Mcp ( 30 - To )
since the properties of water and the cooling medium ( water ) is the same
= 0.02 ( To - 6 ) = 0.011 ( 30 - To )
= 1.82 ( To - 6 ) = 30 - To
hence To ( outlet temperature ) = 14.506°C