Answer:
hello your question has some missing information attached to the answer is the missing component
Answer : αaxial,p = -6.034 ksi ( compressive )
αbend,p = 19.648 ksi ( tensile )
Explanation:
αaxial, p =
equation 1
αbend, p =
equation 2
P = load = 35 kips
A = area of column = 5.8 
d = column cross section depth = 9.5 in
= 55.0 
Hence equation 1 becomes
αaxial,p = -35 / 5.8 = - 6.034 ksi ( compressive )
equation 2 becomes
αbend, p =
= + 19.648 ksi ( tensile )
Answer:
There were a lot of great engineering achievements presented in the 20th century. To name some, we have the electricity, airplane, radio and television, water supply and distribution, computers, television, X-ray imaging, nuclear technologies, and of course the Internet.
Answer:
correct option is (A) 0.5
Explanation:
given data
axial column load = 250 kN per meter
footing placed = 0.5 m
cohesion = 25 kPa
internal friction angle = 5°
solution
we know angle of internal friction is 5° that is near to 0°
so it means the soil is almost cohesive soil.
and for a pure cohesive soil
= 0
and we know formula for
is
= (Nq - 1 ) × tan(Ф) ..................1
so here Ф is very less
should be nearest to zero
and its value can be 0.5
so correct option is (A) 0.5
Answer:
More Drag on the down going wing and More Lift on the up going wing
Explanation:
The autorotation spins of blades used in airborne wind energy technology sectors help drive and move the winds and water propeller-type turbines or shafts of generators to produce electricity at altitude and transmit the electricity to earth through conductive tethers.
Sometimes autorotation takes place in rotating parachutes, kite tails. Etc.
As a result, more Drag usually induces the autorotation spin characteristics of a straight-wing aircraft on the downgoing wing and More Lift on the up-going wing.