Answer:
I think about 1 Month to get into advance level but you become a expert in 6 Months max
Answer:
Both Brass and 1040 Steel maintain the required ductility of 20%EL.
Explanation:
Solution:-
- This questions implies the use of empirical results for each metal alloy plotted as function of CW% and Yield Strength.
- So for each metal alloy use the attached figures as reference and determine the amount of CW% required for a metal alloy to maintain a Yield Strength Y = 345 MPa.
- Left Figure (first) at Y = 345 MPa ( y -axis ) and read on (x-axis):
1040 Steel --------> 0% CW
Brass ---------------> 22% CW
Copper ------------> 66% CW
The corresponding ductility (%EL) for cold Worked metal alloys can be determined from the right figure. Using the %CW for each metal alloy determined in first step and right figure to determine the resulting ductility.
- Right Figure (second) at respective %CW (x-axis) read on (y-axis)
1040 Steel (0% CW) --------> 25% EL
Brass (22% CW) -------------> 21% EL
Copper (66% CW) ----------> 4% EL
We see that both 1040 Steel and Brass maintain ductilities greater than 20% EL at their required CW% for Yield Strength = 345 MPa.
Answer:
Look at some engineering colleges and set up or join a public zoom meeting. For example, some colleges have sign ups for zoom calls on set dates and you‘re able to ask questions.
Explanation:
Answer:
Carbon dioxide temperature at exit is 317.69 K
Carbon dioxide flow rate at heater exit is 20.25 m³/s
Explanation:
Detailed steps are attached below.