Complete Question
Consider a single crystal of some hypothetical metal that has the BCC crystal structure and is oriented such that a tensile stress is applied along a [121] direction. If slip occurs on a (101) plane and in a [111] direction, compute the stress at which the crystal yields if its critical resolved shear stress is 2.9 MPa.
Answer:
The stress is 
Explanation:
From the question we are told that
The critical yield resolved shear stress is 
First we obtain the angle
between the slip direction [121] and [111]
![\lambda = cos^{-1} [\frac{(u_1 u_2 + v_1 v_2 + w_1 w_2}{\sqrt{u_1^2 + v_1 ^2+ w_1^2})\sqrt{( u_2^2 + v_2^2 + w_2 ^2)} } ]](https://tex.z-dn.net/?f=%5Clambda%20%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B%28u_1%20u_2%20%2B%20v_1%20v_2%20%2B%20w_1%20w_2%7D%7B%5Csqrt%7Bu_1%5E2%20%2B%20v_1%20%5E2%2B%20w_1%5E2%7D%29%5Csqrt%7B%28%20u_2%5E2%20%2B%20v_2%5E2%20%2B%20w_2%20%5E2%29%7D%20%7D%20%20%5D)
Where
are the directional indices
![\lambda = cos ^-[ \frac{(1) (-1) + (2) (1) + (1) (1)}{\sqrt{((1)^2 +(2)^2 + (1)^2)}\sqrt{((-1)^2 + (1)^2 + (1)^2 ) } } ]](https://tex.z-dn.net/?f=%5Clambda%20%20%3D%20%20cos%20%5E-%5B%20%5Cfrac%7B%281%29%20%28-1%29%20%2B%20%282%29%20%281%29%20%2B%20%281%29%20%281%29%7D%7B%5Csqrt%7B%28%281%29%5E2%20%2B%282%29%5E2%20%2B%20%281%29%5E2%29%7D%5Csqrt%7B%28%28-1%29%5E2%20%2B%20%281%29%5E2%20%2B%20%281%29%5E2%20%29%20%7D%20%20%7D%20%5D)
![= cos^{-1} [\frac{2}{\sqrt{6} \sqrt{3} } ]](https://tex.z-dn.net/?f=%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B2%7D%7B%5Csqrt%7B6%7D%20%5Csqrt%7B3%7D%20%20%7D%20%5D)
Next is to obtain the angle
between the direction [121] and [101]
![\O = cos^{-1} [\frac{(u_1 u_3 + v_1 v_3 + w_1 w_3}{\sqrt{u_1^2 + v_1 ^2+ w_1^2})\sqrt{( u_3^2 + v_3^2 + w_3 ^2)} } ]](https://tex.z-dn.net/?f=%5CO%20%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B%28u_1%20u_3%20%2B%20v_1%20v_3%20%2B%20w_1%20w_3%7D%7B%5Csqrt%7Bu_1%5E2%20%2B%20v_1%20%5E2%2B%20w_1%5E2%7D%29%5Csqrt%7B%28%20u_3%5E2%20%2B%20v_3%5E2%20%2B%20w_3%20%5E2%29%7D%20%7D%20%20%5D)
Substituting 1 for
, 2 for
, 1 for
, 1 for
, 0 for
, and 1 for 
![\O = cos^{-1} [\frac{1* 1 + 2*0 + 1*1 }{\sqrt{1^2 + 2^2 + 1^2 } \sqrt{(1^2 + 0^2 + 1^2 )} } ]](https://tex.z-dn.net/?f=%5CO%20%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B1%2A%201%20%2B%202%2A0%20%2B%201%2A1%20%7D%7B%5Csqrt%7B1%5E2%20%2B%202%5E2%20%2B%201%5E2%20%7D%20%5Csqrt%7B%281%5E2%20%2B%200%5E2%20%2B%201%5E2%20%29%7D%20%20%7D%20%5D)
![\O = cos^{-1} [\frac{2}{\sqrt{6} \sqrt{2} } ]](https://tex.z-dn.net/?f=%5CO%20%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B2%7D%7B%5Csqrt%7B6%7D%20%5Csqrt%7B2%7D%20%20%7D%20%5D)

The stress is mathematically represented as



