Answer:
From the question we are told that
The length of the rod is ![L_o](https://tex.z-dn.net/?f=L_o)
The speed is v
The angle made by the rod is ![\theta](https://tex.z-dn.net/?f=%5Ctheta)
Generally the x-component of the rod's length is
![L_x = L_o cos (\theta )](https://tex.z-dn.net/?f=L_x%20%3D%20%20L_o%20cos%20%28%5Ctheta%20%29)
Generally the length of the rod along the x-axis as seen by the observer, is mathematically defined by the theory of relativity as
![L_xo = L_x \sqrt{1 - \frac{v^2}{c^2} }](https://tex.z-dn.net/?f=L_xo%20%20%3D%20%20L_x%20%20%5Csqrt%7B1%20%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D)
=> ![L_xo = [L_o cos (\theta )] \sqrt{1 - \frac{v^2}{c^2} }](https://tex.z-dn.net/?f=L_xo%20%20%3D%20%20%5BL_o%20cos%20%28%5Ctheta%20%29%5D%20%20%5Csqrt%7B1%20%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D)
Generally the y-component of the rods length is mathematically represented as
![L_y = L_o sin (\theta)](https://tex.z-dn.net/?f=L_y%20%20%3D%20%20L_o%20%20sin%20%28%5Ctheta%29)
Generally the length of the rod along the y-axis as seen by the observer, is also equivalent to the actual length of the rod along the y-axis i.e
Generally the resultant length of the rod as seen by the observer is mathematically represented as
![L_r = \sqrt{ L_{xo} ^2 + L_y^2}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%20%5Csqrt%7B%20L_%7Bxo%7D%20%5E2%20%2B%20L_y%5E2%7D)
=> ![L_r = \sqrt{[ (L_o cos(\theta) [\sqrt{1 - \frac{v^2}{c^2} }\ \ ]^2+ L_o sin(\theta )^2)}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%5Csqrt%7B%5B%20%28L_o%20cos%28%5Ctheta%29%20%5B%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%5C%20%5C%20%5D%5E2%2B%20L_o%20sin%28%5Ctheta%20%29%5E2%29%7D)
=> ![L_r= \sqrt{ (L_o cos(\theta)^2 * [ \sqrt{1 - \frac{v^2}{c^2} } ]^2 + (L_o sin(\theta))^2}](https://tex.z-dn.net/?f=L_r%3D%20%5Csqrt%7B%20%28L_o%20cos%28%5Ctheta%29%5E2%20%2A%20%5B%20%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%20%5D%5E2%20%2B%20%28L_o%20sin%28%5Ctheta%29%29%5E2%7D)
=> ![L_r = \sqrt{(L_o cos(\theta) ^2 [1 - \frac{v^2}{c^2} ] +(L_o sin(\theta))^2}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%5Csqrt%7B%28L_o%20cos%28%5Ctheta%29%20%5E2%20%5B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%5D%20%2B%28L_o%20sin%28%5Ctheta%29%29%5E2%7D)
=> ![L_r = \sqrt{L_o^2 * cos^2(\theta) [1 - \frac{v^2 }{c^2} ]+ L_o^2 * sin(\theta)^2}](https://tex.z-dn.net/?f=L_r%20%3D%20%20%5Csqrt%7BL_o%5E2%20%2A%20cos%5E2%28%5Ctheta%29%20%20%5B1%20-%20%5Cfrac%7Bv%5E2%20%7D%7Bc%5E2%7D%20%5D%2B%20L_o%5E2%20%2A%20sin%28%5Ctheta%29%5E2%7D)
=> ![L_r = \sqrt{ [cos^2\theta +sin^2\theta ]- \frac{v^2 }{c^2}cos^2 \theta }](https://tex.z-dn.net/?f=L_r%20%20%3D%20%20%5Csqrt%7B%20%5Bcos%5E2%5Ctheta%20%2Bsin%5E2%5Ctheta%20%5D-%20%5Cfrac%7Bv%5E2%20%7D%7Bc%5E2%7Dcos%5E2%20%5Ctheta%20%7D)
=> ![L_o \sqrt{1 - \frac{v^2}{c^2 } cos^2(\theta ) }](https://tex.z-dn.net/?f=L_o%20%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%20%7D%20cos%5E2%28%5Ctheta%20%29%20%7D)
Hence the length of the rod as measured by a stationary observer is
![L_r = L_o \sqrt{1 - \frac{v^2}{c^2 } cos^2(\theta ) }](https://tex.z-dn.net/?f=%20L_r%20%3D%20L_o%20%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%20%7D%20cos%5E2%28%5Ctheta%20%29%20%7D)
Generally the angle made is mathematically represented
![tan(\theta) = \frac{L_y}{L_x}](https://tex.z-dn.net/?f=tan%28%5Ctheta%29%20%3D%20%20%5Cfrac%7BL_y%7D%7BL_x%7D)
=> ![tan {\theta } = \frac{L_o sin(\theta )}{ (L_o cos(\theta ))\sqrt{ 1 -\frac{v^2}{c^2} } }](https://tex.z-dn.net/?f=tan%20%7B%5Ctheta%20%7D%20%3D%20%20%5Cfrac%7BL_o%20sin%28%5Ctheta%20%29%7D%7B%20%28L_o%20cos%28%5Ctheta%20%29%29%5Csqrt%7B%201%20-%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%20%7D)
=>
Explanation: