1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
3 years ago
5

A rod of length Lo moves iwth a speed v along the horizontal direction. The rod makes an angle of (θ)0 with respect to the x' ax

is.
Required:
a. Show that the length of the rod as measured by a stationary observer is L=L0[1-v^2/c^2 cos^2(θ)0].
b. Show that the angle the rod makes iwth the x-axis is given by the expression tan(theta)=tan(θ)0/(1-v^2/c^2)^.5
Physics
1 answer:
Colt1911 [192]3 years ago
7 0

Answer:

From the question we are told that

  The length of the rod is  L_o

    The  speed is  v  

     The angle made by the rod is  \theta

     

Generally the x-component of the rod's length is  

     L_x =  L_o cos (\theta )

Generally the length of the rod along the x-axis  as seen by the observer, is mathematically defined by the theory of  relativity as

       L_xo  =  L_x  \sqrt{1  - \frac{v^2}{c^2} }

=>     L_xo  =  [L_o cos (\theta )]  \sqrt{1  - \frac{v^2}{c^2} }

Generally the y-component of the rods length  is mathematically represented as

      L_y  =  L_o  sin (\theta)

Generally the length of the rod along the y-axis  as seen by the observer, is   also equivalent to the actual  length of the rod along the y-axis i.e L_y

    Generally the resultant length of the rod as seen by the observer is mathematically represented as

     L_r  =  \sqrt{ L_{xo} ^2 + L_y^2}

=>  L_r  = \sqrt{[ (L_o cos(\theta) [\sqrt{1 - \frac{v^2}{c^2} }\ \ ]^2+ L_o sin(\theta )^2)}

=>  L_r= \sqrt{ (L_o cos(\theta)^2 * [ \sqrt{1 - \frac{v^2}{c^2} } ]^2 + (L_o sin(\theta))^2}

=>   L_r  = \sqrt{(L_o cos(\theta) ^2 [1 - \frac{v^2}{c^2} ] +(L_o sin(\theta))^2}

=> L_r =  \sqrt{L_o^2 * cos^2(\theta)  [1 - \frac{v^2 }{c^2} ]+ L_o^2 * sin(\theta)^2}

=> L_r  =  \sqrt{ [cos^2\theta +sin^2\theta ]- \frac{v^2 }{c^2}cos^2 \theta }

=> L_o \sqrt{1 - \frac{v^2}{c^2 } cos^2(\theta ) }

Hence the length of the rod as measured by a stationary observer is

       L_r = L_o \sqrt{1 - \frac{v^2}{c^2 } cos^2(\theta ) }

   Generally the angle made is mathematically represented

tan(\theta) =  \frac{L_y}{L_x}

=>  tan {\theta } =  \frac{L_o sin(\theta )}{ (L_o cos(\theta ))\sqrt{ 1 -\frac{v^2}{c^2} } }

=> tan(\theta ) =  \frac{tan\theta}{\sqrt{1 - \frac{v^2}{c^2} } }

Explanation:

     

     

       

You might be interested in
Which image shows an example of the strong nuclear force in action?
dusya [7]

i think this is the incomplete page that you are showing but the answer is

:-

<h2><u>B</u></h2>
6 0
3 years ago
The psychologist known for latent learning and cognitive maps is _________. A. Robert Rescorla B. Edward Tolman C. William James
Lubov Fominskaja [6]

Answer:

B

Explanation:

B. Edward Tolman

4 0
3 years ago
Read 2 more answers
Heptane and water do not mix, and heptane has a lower density (0.684 g/mL) than water (1.00 g/mL). A graduated cylinder contains
lakkis [162]

Given that the density of heptane is

d_h=\frac{0.684g}{mL}

The mass of heptane is

m_h=31\text{ g}

The density of water is

d_w=\frac{1g}{mL}

The mass of water is

m_w=37\text{ g}

The volume of heptane will be

\begin{gathered} V_h=\frac{m_h}{d_h} \\ =\frac{31}{0.684} \\ =45.32\text{ mL} \end{gathered}

The volume of water will be

\begin{gathered} V_w=\frac{m_w}{d_w} \\ =\frac{37}{1} \\ =37\text{ mL} \end{gathered}

Thus, the volume of heptane is 45.32 mL and the volume of water is 37 mL.

The total volume of liquid in the cylinder will be

\begin{gathered} V=V_h+V_w \\ =45.32+37 \\ =82.32\text{ mL} \end{gathered}

The total volume of liquid in the cylinder will be 82.32 mL.

7 0
10 months ago
What will be the force if the particle's charge is tripled and the electric field strength is halved? Give your answer in terms
Alexus [3.1K]

Answer:

1.5F

Explanation:

Using

E= F/q

Where F= force

E= electric field

q=charge

F= Eq

So if qis tripled and E is halved we have

F= (E/2)3q

F= 1.5Eq=>> 1.5F

4 0
2 years ago
I NEED HELP PLEASE, THANKS! :)
Rainbow [258]

Explanation:

Usually when we think of waves, we think of transverse waves.  These are waves where points move up and down perpendicular to the motion of the wave.  Examples include water waves, whipping a rope, or even doing the "wave" in a crowd.  You can think of these as "two dimensional" waves.

Longitudinal waves are waves where points move left or right, parallel to the motion of the wave.  In other words, there is compression and expansion of the medium.  Examples include sound waves, or pulses in a slinky.

4 0
3 years ago
Other questions:
  • What kind of relationship is it when a tree needs fungus to be present to grow normally
    7·1 answer
  • What is the SI unit for intensity?
    8·1 answer
  • ASAP pls answer right I will mark brainiest . All I know is 4. Is A
    9·1 answer
  • Name:
    9·1 answer
  • Two loudspeakers are located 4.965 m apart on an outdoor stage. A listener is 12.608 m from one and 18.368 m from the other. Dur
    8·1 answer
  • A remote control car is traveling at a velocity of 0.50 m/s when it hits a wall and comes to a stop in 0.050 seconds. What is th
    13·1 answer
  • Does a falling rock have potential or kinetic energy
    13·2 answers
  • N experiment is performed in deep space with two uniform spheres, one with mass 27.0 and the other with mass 107.0 . They have e
    13·1 answer
  • A certain part of a flat screen TV has a thickness of 150 nanometers. How many meters is this?
    8·1 answer
  • The speed of all electromagnetic waves is 3. 00 × 108 meters per second. What is the wavelength of an X-ray with a frequency of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!