So, the force of gravity that the asteroid and the planet have on each other approximately 
<h3>Introduction</h3>
Hi ! Now, I will help to discuss about the gravitational force between two objects. The force of gravity is not affected by the radius of an object, but radius between two object. Moreover, if the object is a planet, the radius of the planet is only to calculate the "gravitational acceleration" on the planet itself,does not determine the gravitational force between the two planets. For the gravitational force between two objects, it can be calculated using the following formula :

With the following condition :
- F = gravitational force (N)
- G = gravity constant ≈
N.m²/kg²
= mass of the first object (kg)
= mass of the second object (kg)- r = distance between two objects (m)
<h3>Problem Solving</h3>
We know that :
- G = gravity constant ≈
N.m²/kg²
= mass of the planet X =
kg.
= mass of the planet Y =
kg.- r = distance between two objects =
m.
What was asked :
- F = gravitational force = ... N
Step by step :





<h3>Conclusion</h3>
So, the force of gravity that the asteroid and the planet have on each other approximately

<h3>See More</h3>
Answer:
D. your brain is processing things on the conscious and unconscious
levels.
Explanation:
Consciousness is the awareness of ourselves and our environment.The two-track mind means that perception, memory, thinking, language, and attitude all operate on two levels conscious and unconscious level.
Glad to help!!
Friction<span> is the resistance to motion of one object moving relative to another. It is not a fundamental force, like gravity or electromagnetism. Instead, scientists believe it is the result of the electromagnetic attraction between charged particles in two touching surfaces.
Hope this is of great help to you, and happy studying~!
~Mistermistyeyed.</span>
So basically the objects would be sandpaper and smooth metal, the sandpaper can indirectly touch the metal since it’s so smooth and it won’t cause any temp change either
Answer:
Explanation:
She's correct but doesn't mean the wagon cannot put into motion. The force that she applied on the wagon, according to Newton's 2nd law, would have generated an acceleration, which translates into motion. The reaction force the wagon applies on her due to Newton's 3rd law, would not hinder its own motion.