False. They have same magnitude and opposite direction but they never cancel as each of them does the action on the other body, and for the forces to cancel out they need to act ob the same body.
Hope this helps!
Answer:68.15m/s
Explanation:
<u><em>Given: </em></u>
v₁=15m/s
a=6.5m/s²
v₁=?
x=340m
<u><em>Formula:</em></u>
v₁²=v₁²+2a (x)
<u>Set up:</u>
=
<h2><u><em>
Solution:</em></u></h2><h2><u><em>
68.15m/s</em></u></h2>
<u />
Answer:
The travel would take 6.7 years.
Explanation:
The equation for an object moving in a straight line with acceleration is:
x = x0 + v0 t + 1/2a*t²
where:
x = position at time t
x0 = initial position
v0 = initial velocity
a = acceleration
t = time
In a movement with constant speed, a = 0 and the equation for the position will be:
x = x0 + v t
where v = velocity
Let´s calculate the position from the Earth after half a year moving with an acceleration of 1.3 g = 1.3 * 9.8 m/s² = 12.74 m/s²:
Seconds in half a year:
1/2 year = 1.58 x 10⁷ s
x = 0 m + 0 m/s + 1/2 * 12.74 m/s² * (1.58 x 10⁷ s)² = 1.59 x 10¹⁵ m
Now let´s see how much time it takes the travel to the nearest star after this half year.
The velocity will be the final velocity achived after the half-year travel with an acceleration of 12.74 m/s²
v = v0 + a t
Since the spacecraft starts from rest, v0 = 0
v = 12.74 m/s² * 1.58 x 10⁷ s = 2.01 x 10 ⁸ m/s
Using the equation for position:
x = x0 + v t
4.1 x 10¹⁶ m = 1.59 x 10¹⁵ m + 2.01 x 10 ⁸ m/s * t
(4.1 x 10¹⁶ m - 1.59 x 10¹⁵ m) / 2.01 x 10 ⁸ m/s = t
t = 2.0 x 10⁸ s * 1 year / 3.2 x 10 ⁷ s = 6.2 years.
The travel to the nearest star would take 6.2 years + 0.5 years = 6.7 years.
Answer:

Explanation:
given,
free electron per atom = 5.6 x 10⁻¹⁰
density of silicon = 5.32 g/cm³
molar mass of silicon = 72.59 g/mol
number of moles per cubic centimeter
= 
number of atom per cubic centimeter
= 
number of free electron per cubic centimeter
= 
= 