1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
3 years ago
14

10.

Physics
1 answer:
Ronch [10]3 years ago
8 0
Answer is D not A! If there was no friction, an object would never decelerate, it would continue moving forever
You might be interested in
A 12 oz can of soda is left in a car on a hot day. In the morning the soda temperature was 60oF with a gauge pressure of 40 psi.
Neko [114]
In this case, volume of the can remains constant. The relationship between pressure and temperature at constant volume is given by:

P/T = Constant

Then
\frac{ P_{1} }{ T_{1} } = \frac{ P_{2} }{ T_{2} }

Where
P1 = 40 psi
P2 = ?
T1 = 60°F ≈ 289 K
T2 = 90°F ≈ 305 K (note, 363 K is not right)

Substituting;
P_{2} = \frac{ P_{1}  T_{2} }{ T_{1} } = \frac{40*305}{289}  =42.21 psi
3 0
3 years ago
One of your delivery trucks traveled 1,200 miles on 55 gallons of gas. How many miles per gallon did the truck get? (Round off y
Aleksandr-060686 [28]
The word "Per" means divide

"miles per gallon" is the same as "miles / gallon"

The truck went 1,200 miles
on 55 gallons

1,200 ÷ 55 = 21.81
7 0
3 years ago
Read 2 more answers
A student, starting from rest, slides down a water slide. On the way down, a kinetic frictional force (a nonconservative force)
salantis [7]

Answer:

<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>

Explanation:

The Non conservative force is defined as a force which do not store energy or get he energy dissipate the energy from the system as the system progress with the motion.

Given are

   <em>  mass of the student 73 kg</em>

<em>      height of water glide 11.8 m</em>

<em>      work done as -5.5*10³ J</em>

Have to find speed at which the student goes down the glide.

According to<em> Law of Conservation of energy</em>,

          K.E =P.E+Work Done

 mv²/2=mgh +W

Rearranging the above eqn for v

v = √2(gh+W/m)

Substituting values,

V =  12.48 m/s.

<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>

 

3 0
3 years ago
Des Linden won the Boston marathon in 2018, becoming the first American woman to win since 1985. The harsh conditions (heavy rai
ankoles [38]

Answer:

3050.6 Litre .

Explanation:

Total time of heart beat = Total time of race  = 2 hrs , 39 minutes and 54 seconds

= 2 x 60 + 39 + 54/60 min

= 120 + 39 + .9 min

= 159.9 min

rate of heart beat = 170 per min

Total no of heart beat during race = 170 x 159.9

volume of blood per kg per beat = 2.5 mL per kg of weight

body weight  = 99 pounds = .4535 x 99  kg = 44.89 kg

volume of blood  per beat = 2.5 mL x 44.89 mL

= 112.225 mL .

Total required volume of blood =  112.225  x 170 x 159.9 mL

= 3050612 mL

= 3050.6 L.

6 0
3 years ago
Why does the large number of hydrogen atoms in the universe suggest that other elements?
lidiya [134]

Answer:

Explanation:

The abundance of the chemical elements is a measure of the occurrence of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by the mass-fraction (the same as weight fraction); by the mole-fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the volume-fraction. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and ideal gas mixtures. Most abundance values in this article are given as mass-fractions.

For example, the abundance of oxygen in pure water can be measured in two ways: the mass fraction is about 89%, because that is the fraction of water's mass which is oxygen. However, the mole-fraction is about 33% because only 1 atom of 3 in water, H2O, is oxygen. As another example, looking at the mass-fraction abundance of hydrogen and helium in both the Universe as a whole and in the atmospheres of gas-giant planets such as Jupiter, it is 74% for hydrogen and 23–25% for helium; while the (atomic) mole-fraction for hydrogen is 92%, and for helium is 8%, in these environments. Changing the given environment to Jupiter's outer atmosphere, where hydrogen is diatomic while helium is not, changes the molecular mole-fraction (fraction of total gas molecules), as well as the fraction of atmosphere by volume, of hydrogen to about 86%, and of helium to 13%.[Note 1]

The abundance of chemical elements in the universe is dominated by the large amounts of hydrogen and helium which were produced in the Big Bang. Remaining elements, making up only about 2% of the universe, were largely produced by supernovae and certain red giant stars. Lithium, beryllium and boron are rare because although they are produced by nuclear fusion, they are then destroyed by other reactions in the stars.[1][2] The elements from carbon to iron are relatively more abundant in the universe because of the ease of making them in supernova nucleosynthesis. Elements of higher atomic number than iron (element 26) become progressively rarer in the universe, because they increasingly absorb stellar energy in their production. Also, elements with even atomic numbers are generally more common than their neighbors in the periodic table, due to favorable energetics of formation.

The abundance of elements in the Sun and outer planets is similar to that in the universe. Due to solar heating, the elements of Earth and the inner rocky planets of the Solar System have undergone an additional depletion of volatile hydrogen, helium, neon, nitrogen, and carbon (which volatilizes as methane). The crust, mantle, and core of the Earth show evidence of chemical segregation plus some sequestration by density. Lighter silicates of aluminum are found in the crust, with more magnesium silicate in the mantle, while metallic iron and nickel compose the core. The abundance of elements in specialized environments, such as atmospheres, or oceans, or the human body, are primarily a product of chemical interactions with the medium in which they reside.

4 0
3 years ago
Other questions:
  • A hockey puck sliding on a frictionless surface strikes a box at rest. After the collision, the two objects stick together and m
    13·1 answer
  • Which statement correctly describes the differences between positive and negative acceleration? Positive acceleration describes
    13·2 answers
  • What is the average weight of a fully-grown heart?
    5·1 answer
  • An 18.5-cm-diameter loop of wire is initially oriented perpendicular to a 1.5-T magnetic field. The loop is rotated so that its
    6·1 answer
  • Why does the unit of time enter twice in the unit of acceleration?
    5·1 answer
  • Which of these countries does not have access to both the atlantic and pacific oceans?
    10·1 answer
  • A hair dryer required 12 V to operate properly. When plugged into a 120 V outlet, a transformer must change voltage. If the prim
    9·1 answer
  • Un repartidor de comida rápida entrega una pizza a una casa que se encuentra a 20 km de distancia y se demora 20 minutos en lleg
    7·1 answer
  • 1. A pulley system has efficiency 60%. Calculate mechanical advantage to make its velocity ratio 6 .How much amount of effort is
    14·1 answer
  • 18) A charm quark has a charge of approximately
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!