<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
Answer:
The answer is given in the attachment
Explanation:
Answer:
Explanation:
1) acceleration is the change in velocity of a body with respect to time.
acceleration = velocity/time
Given
velocity = 139m/s
time = 20secs
acceleration = 139/20
acceleration = 6.95m/s²
Hence its average acceleration during the first 20 seconds of the launch is 6.95m/s²
2) Speed is the rate of change of distance with respect to time.
average speed = distance/time
Time = distance/speed
Time = 100/7823
Time = 0.013s
3) Using the equation of motion v² = u²+2as
v² = 0²+2(15)(60)
v² = 30*60
v² =1800
v = √1800
v = 42.43m/s
The answer would be Conduction