Ans: Time <span>taken by a pulse to travel from one support to the other
= 0.348s</span>
Explanation:First you need to find out the speed of the wave.
Since
Speed = v =

Where
T = Tension in the cord = 150N
μ = Mass per unit length = mass/Length = 0.65/28 = 0.0232 kg/m
So
v =

= 80.41 m/s
Now the time-taken by the wave = t = Length/speed = 28/80.41=
0.348s
Answer:
Explanation:
Newton's 2 nd law of motion tells that when equal torque is applied on object having higher moment of inertia , it will rotate slower .
Moment of inertia of boiled egg is higher because the whole egg rotates as s solid unit . Hence it will rotate slower or it rolls slower on an inclined surface .
In this way by applying Newton's law , we can identify raw or boiled egg .
Answer:
33 g.
Explanation:
Assuming no heat transfer can be possible except for heat exchange between water and steel, we can say that the heat lost by the knife, must be equal to the heat gained by the water.
As we have a limit for the maximum temperature of both elements (once reached a final thermal equilibrium), of 100ºC, which means that the maximum allowable change in temperature will be of 300º C for the knife, and of 80º C for the water.
Empirically , it has been showed that for a heat exchange process using only conduction, the heat needed to raise the temperature of a body, is proportional to the mass, being the proportionality constant a factor that depends on the material, called specific heat.
So, we can write the following equation:
cs*mk*Δtk = cw*mw*Δtw
Replacing by the givens of the question, we have:
0.11 cal/gºC * 80 g * 300ºC = 1 cal/gºC*mw*80ºC
Solving for mw = 2,640 cal / 80 cal/g =33 g.
Answer:
The amount of energy required is 
Explanation:
The energy required to convert the ice to steam is the sum of:
1) Energy required to raise the temperature of the ice from -20 to 0 degree Celsius.
2) Latent heat required to convert the ice into water.
3) Energy required to raise the temperature of water from 0 degrees to 100 degrees
4) Latent heat required to convert the water at 100 degrees to steam.
The amount of energy required in each process is as under
1) 
where
' is specific heat of ice =
2) Amount of heat required in phase 2 equals

3) The amount of heat required to raise the temperature of water from 0 to 100 degrees centigrade equals

where
' is specific heat of water=
4) Amount of heat required in phase 4 equals

Thus the total heat required equals 