Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Answer:
(D) Inertia
Explanation:
Inertia words with Gravity to keep the Moon, Earth and Sun All in Orbit!
<em>-Aslina</em>
Answer:
do not worry bro you will know how to use it
A 59 kg sprinter, starting from rest, runs 47 m in 7.0 s at constant acceleration.?
What is the sprinter's power output at 2.0 s, 4.0 s, and 6.0 s?
Instantaneous Power is the force times velocity
P = Fv
Because the acceleration is constant, the force will be constant as well
F = ma
P = mav
for constant acceleration, the velocity at each time is found using
v = at
P = ma(at) = ma²t
find the acceleration using kinematic equation
s = ½at²
a = 2s/t²
a = 2(47) / 7.0²
a = 1.918 m/s²
P(2.0) = 59(1.918²)2.0 = 434.25 W = 0.43 kW
P(4.0) = 59(1.918²)4.0 = 868.51 W = 0.87 kW
P(6.0) = 59(1.918²)6.0 = 1302.76 W = 1.3 kW
I hope this helped.
<span>LOCATION Z, because it is only 2 away from the coast.
The rest are farther inland
hope this helps</span>