Generally, the length of the line will indicate how strong the force is. If you have two opposing forces and one is higher than the other, you would draw the line of the higher force visibly longer.
Answer:
17.2 seconds
Explanation:
Given:
v₀ = 0 m/s
a₁ = 10.0 m/s²
t₁ = 3.0 s
a₂ = 16 m/s²
t₂ = 5.0 s
a₃ = -12 m/s²
v₃ = 0 m/s
Find: t
First, find v₁:
v₁ = a₁t₁ + v₀
v₁ = (10.0 m/s²) (3.0 s) + (0 m/s)
v₁ = 30 m/s
Next, find v₂:
v₂ = a₂t₂ + v₁
v₂ = (16 m/s²) (5.0 s) + (30 m/s)
v₂ = 110 m/s
Finally, find t₃:
v₃ = a₃t₃ + v₂
(0 m/s) = (-12 m/s²) t₃ + (110 m/s)
t₃ = 9.2 s
The total time is:
t = t₁ + t₂ + t₃
t = 3.0 s + 5.0 s + 9.2 s
t = 17.2 s
Round as needed.
Answer:
- 210 rad/s²
Explanation:
n = frequency of rotation = 3400/60 = 170/3 per sec.
angular velocity ω ( 0 ) at time 0 = 2π n = 2π x 170/3
angular velocity at time t = ω(t) = 0
now, ω²( t) = w²(o) + 2α Φ ( α = angular acceleration and Φ = angular displacement) = 2π x 48 rad.
0 = ( 2π x 170/3 )² + 2α x 48 x 2π
α = - (2π x 170 x 170 )/ (3 x 3 x 2 x 48 ) = 210 rad / s²