Answer:
∠RST = 120°
Step-by-step explanation:
We assume the positions of the lines and angles will match the attached figure. The angle addition theorem gives a relation that can be solved for x, then for the value of angle RST.
∠RSU +∠UST = ∠RST
__
78° + (3x -12)° = (6x +12)° . . . . . substitute given values into the above
54 = 3x . . . . . . . . . . . . . . . . divide by °, subtract 3x+12
108 = 6x . . . . . . . . . . . multiply by 2
120° = (6x +12)° = ∠RST . . . . add 12, show units
The measure of angle RST is 120 degrees.
_____
<em>Additional comment</em>
Note that we don't actually need to know the value of x (18) in this problem. We only need to know the value of 6x.
1/7 is your answer. It can't be reduced any further. If there is supposed to be a problem, next time, add it.
Answer:
x= - 1
Step-by-step explanation:
A quadratic equation is in the form of ax²+bx+c. The time at which the height of the ball is 16 feets is 0.717 seconds and 1.221 seconds.
<h3>What is a quadratic equation?</h3>
A quadratic equation is an equation whose leading coefficient is of second degree also the equation has only one unknown while it has 3 unknown numbers. It is written in the form of ax²+bx+c.
The complete question is:
A ball is thrown from an initial height of 2 feet with an initial upward velocity of 31 ft/s. The ball's height h (in feet) after 7 seconds is given by the following, h=2+31t-16t². Find all values of t for which the ball's height is 16 feet. Round your answer(s) to the nearest hundredth.
The time at which the height of the ball is 16 feet can be found by,
h = 2 + 31t - 16t²
16 = 2 + 31t - 16t²
16 - 2 - 31t + 16t² = 0
16t² - 31t + 14 = 0

t = 0.717 , 1.221
Hence, the time at which the height of the ball is 16 feets is 0.717 seconds and 1.221 seconds.
Learn more about Quadratic Equations:
brainly.com/question/2263981
#SPJ1
Answer:
False.
Just because the name begins with J does not mean the name is Jim. For example: Jack, Joshua, James, Jacob, and so on.