Answer: The horizontal velocity of a projectile is constant (a never changing in value. The vertical velocity of a projectile changes by 9.8 m/s each second.
Explanation: I hope that helped!
Answer:
P =18760.5 Pa
Explanation:
Given that
Volume ,V= 0.0434 m³
Mass ,m= 4.19 g = 0.00419 kg
T= 417 K
If we assume that water vapor is behaving like a ideal gas ,then we can use ideal gas equation
Ideal gas equation P V = m R T
p=Pressure ,V = Volume ,m =mass
T=Temperature ,R=Universal gas constant
Now by putting the values
P V = m R T
For water R= 0.466 KJ/kgK
P x 0.0434 = 0.00419 x 0.466 x 417
P =18.7605 KPa
P =18760.5 Pa
Therefore the answer is 18760.5 Pa
The wave takes 11.3 s to cover a distance of 26.5 m, so its speed is:

The distance between two consecutive crests is 3 m, and this corresponds to the wavelength of the wave. To find its frequency, we can use the relationship between the speed v, the wavelength

and the frequency f:
Answer: A and B
Explanation: it says benefits and the other two are not benefits.
The total mechanical energy is the sum of the kinetic energy and the gravitational potential energy:

where m=3.5 kg is Candy's mass, v=1 m/s is her velocity and h=3.5 m is her height. If we replace these numbers, we find the mechanical energy of the system: