Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°
The air movements toward the equator are called trade winds, which are warm, steady breezes that blowalmost continuously. The Coriolis Effect makes the trade winds appear to be curving to the west, whether they are traveling to the equator from the south or north. Answer trade wind
You are given the mass of a sphere that is 26 kg sphere and it is released from rest when θ = 0°. You are also given the force of the spring that is F = 100 N. You are asked to find the tension of the spring. Imagine that the sphere is connected to a spring. The spring exerts a tension and the spring exerts gravitational pull. This will follow the second law of newton.
T - F = ma
T = ma + F
T = 26kg (9.81m/s²) + 100 N
T = 355.06 N
Distance = speed x time
distance = 116 x 10
distance = 1160 m
The correct answer is
<span>"chemical bonds within the glucose molecules "
The chemical bonds of the glucose molecules contain chemical energy, and when these bonds are broken by the processes acting inside the body, the energy of the bonds is released and it can be used by the body.
</span>