Okay, let’s look at it this way: when does a line pass through the origin? The line represents possible values of x and y that satisfy the equation.
So, when a line passes through the origin, it passes through the coordinates (0,0). x = 0, y = 0. So, let’s model this with the equation ax + by + c = 0. Sub in x = 0 and y = 0 to the equation and we find that 0 + 0 + c = 0. Clearly, c = 0.
So, with this simple explanation, I hope you understand when a line does pass through the origin.
Now, let’s look at when a line doesn’t pass through the origin. This is when c is not equal to 0. Hence, when x = 0, y cannot equal 0; c + by = 0, and we know that c is not 0. If y is 0, then we get c = 0… where c is not 0. Ehh. Thus, you can see that a line does not pass through the origin when c is not equal to 0 by ehat is hope is a simple explanation. You don’t need to know how to prove it, I presume, but that’s not too hard either.
Oops, I realised that I just assumed you were talking about linear graphs. For quadratic graphs, the reasoning is similar. For graphs of the form y = ax^2, the minimum/maximum point of the graph will be the origin. For graphs of the form y = ax^2 + bx, it will pass through the origin but the line of symmetry will be different. For graphs of the form y = ax^2 + bx + c (you know, where c is not zero) , the graph will not pass through the origin because the maximum/ minimum point is actually raised or lowered by c units
Thank you for posting your question here at brainly. Below is Yoland's study:
<span>Yolanda is studying two waves. The first wave has an amplitude of 2 m, and the second has an amplitude of 3 m. </span> I think the answer is "She can use constructive interference to generate a wave with an amplitude of 1.5 m."
All organisms are formed from cells, "understanding how cells are able to interact with other cells during development helps us understand how tissues and organs are established and, consequently, how the shape arises in embryos," explains Germán Reig
there is not enough information about the liquid to know the force required for each. ie. stirring a cup of water is different than stirring a cup of pudding.