Answer:
Check the 2nd, 3rd and 4th statements.
Explanation:
Answer:
A) 282.34 - j 12.08 Ω
B) 0.0266 + j 0.621 / unit
C)
A = 0.812 < 1.09° per unit
B = 164.6 < 85.42°Ω
C = 2.061 * 10^-3 < 90.32° s
D = 0.812 < 1.09° per unit
Explanation:
Given data :
Z ( impedance ) = 0.03 i + j 0.35 Ω/km
positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km
A) calculate Zc
Zc =
=
=
= 282.6 < -2.45°
hence Zc = 282.34 - j 12.08 Ω
B) Calculate gl
gl =
d = 500
z = 0.03 i + j 0.35
y = j4.4*10^-6 S/km
gl = 
= 
= 0.622 < 87.55 °
gl = 0.0266 + j 0.621 / unit
C) exact ABCD parameters for this line
A = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
B = Zc sin h (gl) Ω = 164.6 < 85.42°Ω ( as calculated )
C = 1/Zc sin h (gl) s = 2.061 * 10^-3 < 90.32° s ( as calculated )
D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
where : cos h (gl) = 
sin h (gl) = 
D pad or rb or lb hop this helps
Answer:
Explanation:
We know that Drag force

Where
is the drag force constant.
A is the projected area.
V is the velocity.
ρ is the density of fluid.
Form the above expression of drag force we can say that drag force depends on the area .So We should need to take care of correct are before finding drag force on body.
Example:
When we place our hand out of the window in a moving car ,we feel a force in the opposite direction and feel like some one trying to pull our hand .This pulling force is nothing but it is drag force.
Answer:
Tension in cable BE= 196.2 N
Reactions A and D both are 73.575 N
Explanation:
The free body diagram is as attached sketch. At equilibrium, sum of forces along y axis will be 0 hence
hence

Therefore, tension in the cable, 
Taking moments about point A, with clockwise moments as positive while anticlockwise moments as negative then



Similarly,


Therefore, both reactions at A and D are 73.575 N