Answer:
165 mm
Explanation:
The mass on the piston will apply a pressure on the oil. This is:
p = f / A
The force is the weight of the mass
f = m * a
Where a in the acceleration of gravity
A is the area of the piston
A = π/4 * D1^2
Then:
p = m * a / (π/4 * D1^2)
The height the oil will raise is the heignt of a colum that would create that same pressure at its base:
p = f / A
The weight of the column is:
f = m * a
The mass of the column is its volume multiplied by its specific gravity
m = V * S
The volume is the base are by the height
V = A * h
Then:
p = A * h * S * a / A
We cancel the areas:
p = h * S * a
Now we equate the pressures form the piston and the pil column:
m * a / (π/4 * D1^2) = h * S * a
We simplify the acceleration of gravity
m / (π/4 * D1^2) = h * S
Rearranging:
h = m / (π/4 * D1^2 * S)
Now, h is the heigth above the interface between the piston and the oil, this is at h1 = 42 mm. The total height is
h2 = h + h1
h2 = h1 + m / (π/4 * D1^2 * S)
h2 = 0.042 + 10 / (π/4 * 0.14^2 * 0.8) = 0.165 m = 165 mm
Answer:
The answer is below
Explanation:
The practical considerations you might encounter when you increase the moment of inertia (I) while keeping the cross-sectional area fixed are:
1. Shapes of moment of inertia: Engineers should consider or know the different shapes of moment of inertia for different shape
2. Understanding the orientation of the beam: this will allow engineers to either increase or decrease the moment of inertia of a beam without increasing its cross sectional area.
Answer:Turning
Explanation: Turning is the process in which the work piece is subjected to machining so that excess part is removed with the help of rotation by turning machine or lathe machine.The cutter tool is used for cutting the excess of the work piece and it is mostly single-pointed so that give accurate removal of the excess of work piece.At times , according to the requirement multi-pointed tool is also used Therefore, the correct option is turning.