1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
4 years ago
6

simply supported beam is subjected to a linearly varying distributed load ( ) 0 q x x L 5 q with maximum intensity 0 q at B. The

beam has a length L 5 4 m and rectangular cross section with a width of 200 mm and height of 300 mm. Determine the maximum permissible value for the maximum inten- sity, 0 q , if the allowable normal stresses in tension and compression are 120 MPa.

Engineering
1 answer:
Pavlova-9 [17]4 years ago
8 0

Answer:

q₀ = 350,740.2885 N/m

Explanation:

Given

q(x)=\frac{x}{L} q_{0}

σ = 120 MPa = 120*10⁶ Pa

L=4 m\\w=200 mm=0.2m\\h=300 mm=0.3m\\q_{0}=? \\

We can see the pic shown in order to understand the question.

We apply

∑MB = 0  (Counterclockwise is the positive rotation direction)

⇒ - Av*L + (q₀*L/2)*(L/3) = 0

⇒ Av = q₀*L/6   (↑)

Then, we apply

v(x)=\int\limits^L_0 {q(x)} \, dx\\v(x)=-\frac{q_{0}}{2L} x^{2}+\frac{q_{0} L}{6} \\M(x)=\int\limits^L_0 {v(x)} \, dx=-\frac{q_{0}}{6L} x^{3}+\frac{q_{0} L}{6}x

Then, we can get the maximum bending moment as follows

M'(x)=0\\ (-\frac{q_{0}}{6L} x^{3}+\frac{q_{0} L}{6}x)'=0\\ -\frac{q_{0}}{2L} x^{2}+\frac{q_{0} L}{6}=0\\x^{2} =\frac{L^{2}}{3}\\  x=\sqrt{\frac{L^{2}}{3}} =\frac{L}{\sqrt{3} }=\frac{4}{\sqrt{3} }m

then we get  

M(\frac{4}{\sqrt{3} })=-\frac{q_{0}}{6*4} (\frac{4}{\sqrt{3} })^{3}+\frac{q_{0} *4}{6}(\frac{4}{\sqrt{3} })\\ M(\frac{4}{\sqrt{3} })=-\frac{8}{9\sqrt{3} } q_{0} +\frac{8}{3\sqrt{3} } q_{0}=\frac{16}{9\sqrt{3} } q_{0}m^{2}

We get the inertia as follows

I=\frac{w*h^{3} }{12} \\ I=\frac{0.2m*(0.3m)^{3} }{12}=4.5*10^{-4}m^{4}

We use the formula

σ = M*y/I

⇒ M = σ*I/y

where

y=\frac{h}{2} =\frac{0.3m}{2}=0.15m

If M = Mmax, we have

(\frac{16}{9\sqrt{3} }m^{2} ) q_{0}\leq \frac{120*10^{6}Pa*4.5*10^{-4}m^{4}   }{0.15m}\\ q_{0}\leq 350,740.2885\frac{N}{m}

You might be interested in
A slight breeze is blowing over the hot tub above and yields a heat transfer coefficient h of 20 W/m2 -K. The air temperature is
patriot [66]

Answer:4050 W

Explanation:

Given

Heat transfer Coefficient(h)=20 W/m^2-K

Air temperature =75 F

surface area(A)=7.5 m^2

Temperature of hot tube is 102 F

We know heat transfer due to convection is given by

Q=hA\left ( \Delta T\right )

Q=20\times 7.5\left ( 102-75\right )=4050 W

7 0
3 years ago
Consider the freeway in Problem 1. At one point along this freeway there is a 4% upgrade with a directional hourly traffic volum
ryzh [129]

Answer:

The Question is incomplete, the complete question is as follows:

<em>Consider the freeway in Problem 1. At one point along this freeway there is a 4% upgrade with a directional hourly traffic volume of 5,435 vehicles. If all other conditions are as described in Problem 1, how long can this grade be without the freeway LOS dropping to F? </em>

A six-lane rural freeway (three lanes in each direction) has regular weekday users and currently operates at maximum LOS C conditions. The base free-flow speed is 65 mi/h, lanes are 11 ft wide, the right-side shoulder is 4 ft wide, and the interchange density is 0.25 per mile. The highway is one rolling terrain with 10% large trucks and buses (no recreational vehicles), and the peak-hour factor is 0.90. Determine the hourly volume for these conditions

Explanation:

<em>Make the assumption Base continuous flow velocity (BFFS)= 65 mph. </em>

Pitch width= 11 ft.

Decrease in lane width pace,fLW= 1.9 mph.

Complete Lateral clearance= 4 ft. Lateral clearance speed reduction, fLC= 0.8 mph.

Complete Width of the Ramp= 0.25 mile.

Velocity reduction proportional to the ramp height, f ID= 0 mph.

Assume lane number to be = 3.

Reduction in speed corresponding to no. of lanes, fN = 3 mph

Free Flow Speed (FFS) = BFFS – fLW – fLC – fN – fID = 65 – 1.9 – 0.8 – 3 – 0 = 59.3 mph

Peak Flow, V veh/hr

Peak-hour factor = 0.90

Trucks = 10%

Rolling Terrain

fHV = 1/ (1 + 0.10 (2.5-1)) = 1/1.15 = 0.8696

fP = 1.0

Peak Flow Rate, Vp = V / (PHV*n*fHV*fP) = V/ (0.90*3*0.8696*1.0) = 0.426V veh/hr/ln

Average speed of vehicles, S = FFS = 59.3 mph

Level of service C

Density of LOS C lies between 18 - 25 veh/mi/ln

Maximum density = 25 veh/mi/ln

Density = V​​​​​​p /S = 25

0.426V = 25 * 59.3

V = 3480 veh/hr

b) V = 5435 veh/hr

LOS dropping to F

Max density = 45 veh/mi/ln

Density = Vp/S = 45

V​​​​​​p = 45 * 59.3 = 2668.5 veh/hr/ln

V/(PHF * n * f​​​​​​HV * f​​​​​​P​​​) = 2668.5

f​​​​​​HV = 5435/(0.9*3*2668.5*1.0) = 0.754

1/(1+0.10 (E​​​​​​T -1)) = 0.754

E​​​​​​T = 4.26 ~ 3.5

<em>For 4% upgrade and 10% trucks with E​​​​​​T = 3.5, length of the grade is Greater than 1.0 miles</em>

6 0
3 years ago
Read 2 more answers
Un material determinado tiene un espesor de 30 cm y una conductividad térmica (K) de 0,04 w/m°C. En un instante dado la distribu
aksik [14]

Answer:

Para x=0:

\phi=1.2 W/m^{2}  

Para x=30 cm:

\phi=-2.4 W/m^{2}  

Explanation

Podemos utilizar la ley de Fourier par determinar el flujo de calor:

\phi=-k\frac{dT}{dx}(1)

Por lo tanto debemos encontrar la derivada de T(x) con respecto a x primero.

Usando la ley de potencia para la derivda, tenemos:

\frac{dT(x)}{dx}=300x-30

Remplezando esta derivada en (1):

\phi=-0.04(300x-30)

Para x=0:

\phi=0.04(30)

\phi=1.2 W/m^{2}  

Para x=30 cm:

\phi=-0.04(300*0.3-30)

\phi=-2.4 W/m^{2}    

Espero que te haya ayudado!

4 0
3 years ago
Why do engineers need to be particularly aware of the impact of hubris?
miv72 [106K]

Answer:

A) Their creations change society.

7 0
3 years ago
Going green means: increasing one's initiatives toward a concern for the environment. increasing one's bottom line, before any o
Tcecarenko [31]

Answer:

Going green means increasing one's initiatives toward a concern for the environment.

Explanation:

Going green involves all the knowledge and practices that can lead to more environmentally friendly and ecologically responsible decisions and lifestyles, which would protect and sustain the natural resources present in the environment for both present and future generations.

8 0
3 years ago
Other questions:
  • With increases in magnification, which of the following occur? a. The field of view decreases. b. The ambient illumination decre
    9·1 answer
  • ________ is the most theoretical computing discipline, focusing mostly on finding new and better ways for computers to work
    9·1 answer
  • Following lockout/tagout (LOTO) procedures is important but not required when working with dangerous
    10·1 answer
  • Module 42 Review and Assessment
    7·1 answer
  • The wave-particle duality theory is the first adequate explanation of which one of the following observations about the hydrogen
    10·1 answer
  • Which component found in fertilizer is a known cancer-causing agent?
    11·2 answers
  • Cold forging makes metal more workable than hot forging.<br> True<br> False
    11·2 answers
  • which acpi power state allows a system to start where it left off, but all other components are turned off? sleeping mechanical
    13·1 answer
  • A ____ is either in the pressure reducer or in the downstream side of the system to ensure that the control air pressure does no
    15·1 answer
  • A machine has an efficiency of 15%. If the energy input is 300 joules, how much useful energy is generated?(1 point).
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!