1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
4 years ago
6

simply supported beam is subjected to a linearly varying distributed load ( ) 0 q x x L 5 q with maximum intensity 0 q at B. The

beam has a length L 5 4 m and rectangular cross section with a width of 200 mm and height of 300 mm. Determine the maximum permissible value for the maximum inten- sity, 0 q , if the allowable normal stresses in tension and compression are 120 MPa.

Engineering
1 answer:
Pavlova-9 [17]4 years ago
8 0

Answer:

q₀ = 350,740.2885 N/m

Explanation:

Given

q(x)=\frac{x}{L} q_{0}

σ = 120 MPa = 120*10⁶ Pa

L=4 m\\w=200 mm=0.2m\\h=300 mm=0.3m\\q_{0}=? \\

We can see the pic shown in order to understand the question.

We apply

∑MB = 0  (Counterclockwise is the positive rotation direction)

⇒ - Av*L + (q₀*L/2)*(L/3) = 0

⇒ Av = q₀*L/6   (↑)

Then, we apply

v(x)=\int\limits^L_0 {q(x)} \, dx\\v(x)=-\frac{q_{0}}{2L} x^{2}+\frac{q_{0} L}{6} \\M(x)=\int\limits^L_0 {v(x)} \, dx=-\frac{q_{0}}{6L} x^{3}+\frac{q_{0} L}{6}x

Then, we can get the maximum bending moment as follows

M'(x)=0\\ (-\frac{q_{0}}{6L} x^{3}+\frac{q_{0} L}{6}x)'=0\\ -\frac{q_{0}}{2L} x^{2}+\frac{q_{0} L}{6}=0\\x^{2} =\frac{L^{2}}{3}\\  x=\sqrt{\frac{L^{2}}{3}} =\frac{L}{\sqrt{3} }=\frac{4}{\sqrt{3} }m

then we get  

M(\frac{4}{\sqrt{3} })=-\frac{q_{0}}{6*4} (\frac{4}{\sqrt{3} })^{3}+\frac{q_{0} *4}{6}(\frac{4}{\sqrt{3} })\\ M(\frac{4}{\sqrt{3} })=-\frac{8}{9\sqrt{3} } q_{0} +\frac{8}{3\sqrt{3} } q_{0}=\frac{16}{9\sqrt{3} } q_{0}m^{2}

We get the inertia as follows

I=\frac{w*h^{3} }{12} \\ I=\frac{0.2m*(0.3m)^{3} }{12}=4.5*10^{-4}m^{4}

We use the formula

σ = M*y/I

⇒ M = σ*I/y

where

y=\frac{h}{2} =\frac{0.3m}{2}=0.15m

If M = Mmax, we have

(\frac{16}{9\sqrt{3} }m^{2} ) q_{0}\leq \frac{120*10^{6}Pa*4.5*10^{-4}m^{4}   }{0.15m}\\ q_{0}\leq 350,740.2885\frac{N}{m}

You might be interested in
Problem 2
mamaluj [8]

Answer:

susmtqjqmjttqmjtqmjtmqutq

Explanation:

bakaf

fjgjgi5j6leny4mjtqjmu5tjmmwtjmjtj

8 0
3 years ago
If a front gear had 24 teeth, and a rear gear has 12 teeth:
zubka84 [21]

Answer:

  4 times around

Explanation:

The total number of teeth involved will be the same for each gear. If the front gear is connected to the pedal and it goes around twice, then 2·24 = 48 teeth will have passed the reference point.

If the rear gear is attached to the wheel, and 48 teeth pass the reference point, then it will have made ...

  (48 teeth)/(12 teeth/turn) = 4 turns

4 0
3 years ago
Conditions of special concern: i. Suggest two reasons each why distillation columns are run a.) above or b.) below ambient press
lutik1710 [3]

Solution :

Methods for selling pressure of a distillation column :

a). Set, \text{based on the pressure required to condensed} the overhead stream using cooling water.

  (minimum of approximate 45°C condenser temperature)

b). Set, \text{based on highest temperature} of bottom product that avoids decomposition or reaction.

c). Set, \text{based on available highest } not utility for reboiler.

Running the distillation column above the ambient pressure because :

The components to be distilled have very high vapor pressures and the temperature at which they can be condensed at or below the ambient pressure.

Run the reactor at an evaluated temperature because :

a). The rate of reaction is taster. This results in a small reactor or high phase conversion.

b). The reaction is endothermic and equilibrium limited increasing the temperature shifts the equilibrium to the right.

Run the reaction at an evaluated pressure because :

The reaction is gas phase and the concentration and hence the rate is increased as the pressure is increased. This results in a smaller reactor and /or higher reactor conversion.

The reaction is equilibrium limited and there are few products moles than react moles. As increase in pressure shifts the equilibrium to the right.

7 0
3 years ago
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
If a hoist lifts a 4500lb load 30ft in 15s, the power delivered to the load is a) 18.00hp b) 9000hp c) 16.36hp d) None of the ab
12345 [234]

Answer:

Explanation:

load = 4500lb                   lift height= 30 ft

time =15 s

velocity=\frac{30}{15} ft/s

velocity=2 ft/s

power = force\times velocity

power={4500}\times2

power= 9000 lb ft/s

1 hp= 550 lb ft/s

power= \frac{9000}{550} =16.36 hp

5 0
3 years ago
Other questions:
  • The steel water pipe has an inner diameter of 12 in. and a wall thickness of 0.25 in. If the valve A is closed and the water pre
    10·1 answer
  • Does a thicker core make an electromagnet stronger?
    13·1 answer
  • What is centrifugal force with respect to unbalance? What is the formula used to determine centrifugal force?
    12·1 answer
  • Which of the following describes fibers? a)- Single crystals with extremely large length-to-diameter ratios. b)- Polycrystalline
    10·1 answer
  • A wooden cylinder (0 02 x 0 02 x 0 1m) floats vertically in water with one-third of ts length immersed. a)-Determine the density
    7·1 answer
  • ITS FOR DRIVERS ED!!
    13·2 answers
  • Technician A says that squeeze-type resistance spot welding (STRSW) may be used on open butt joints. Technician B says that repl
    14·1 answer
  • Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
    8·1 answer
  • The structure of PF3(C6H5)2 is trigonal bipyramidal, with one equatorial and two axial F atoms which interchange positions when
    15·1 answer
  • Which step in the engineering design phase is requiring concussion prevention from blows up to 40 mph an example of?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!