Answer:
Explanation:
If E₀ is the electric field outside the smaller sphere and r is the radius of larger sphere.
E₀ = kQ/r²
The radius of the larger sphere is 3r and the charge on both sphere is same then the electric field outside the larger sphere is given as
E = kQ/(3r)² = kQ/9r² = 1/9 (kQ/r²)= 1/9 x E₀
hence the correct option is e.
Answer:
The answer is D
Explanation:
I'm too lz to explain everything.
sorry.
Your question kind of petered out there towards the end and you didn't specify
the terms, so I'll pick my own.
The "Hubble Constant" hasn't yet been pinned down precisely, so let's pick a
round number that's in the neighborhood of the last 20 years of measurements:
<em>70 km per second per megaparsec</em>.
We'll also need to know that 1 parsec = about 3.262 light years.
So the speed of your receding galaxy is
(Distance in LY) x (1 megaparsec / 3,262,000 LY) x (70 km/sec-mpsc) =
(150 million) x (1 / 3,262,000) x (70 km/sec) =
<em>3,219 km/sec </em>in the direction away from us (rounded)
Fhfjhfjikauijpoejfdjkkjff\
Answer:
a.) F = 3515 N
b.) F = 140600 N
Explanation: given that the
Mass M = 74kg
Initial velocity U = 7.6 m/s
Time t = 0.16 s
Force F = change in momentum ÷ time
F = (74×7.6)/0.16
F = 3515 N
b.) If Logan had hit the concrete wall moving at the same speed, his momentum would have been reduced to zero in 0.0080 seconds
Change in momentum = 74×7.6 + 74×7.6
Change in momentum = 562.4 + 562.4 = 1124.8 kgm/s
F = 1124.8/0.0080 = 140600 N