Weight = (mass) x (acceleration of gravity)
Acceleration of gravity = 9.81 m/s² on Earth, 1.62 m/s² on the Moon.
The feather's weight is . . .
On Earth: (0.0001 kg) x (9.81 m/s²) = <em>0.000981 Newton </em>
On the Moon: (0.0001 kg) x (1.62 m/s²) = <em>0.000162 N</em>
The presence or absence of atmosphere makes no difference. In fact, the numbers would be the same if the feather were sealed in a jar, or spinning wildly in a tornado, or hanging by a thread, or floating in a bowl of water or chicken soup. Weight is just the force of gravity between the feather and the Earth. It's not affected by what's around the feather, or what's happening to it.
Answer:
the magnitude and direction of d → B on the x ‑axis at x = 2.50 m is -6.4 × 10⁻¹¹T(Along z direction)
the magnitude and direction of d → B on the z ‑axis at z = 5.00 m is 1.6 × 10⁻¹¹T(Along x direction)
Explanation:
Use Biot, Savart, the magnetic field

Given that,
i = 1.00A
d → l = 4.00 m m ^ j
r = 2.5m
Displacement vector is


=2.5m
on the axis of x at x = 2.5

r = 2.5m
And unit vector


Therefore, the magnetic field is as follow


(Along z direction)
B)r = 5.00m
Displacement vector is


=5.00m
on the axis of x at x = 5.0

r = 5.00m
And unit vector


Therefore, the magnetic field is as follow


(Along x direction)
Answer:
A. α = - 1.047 rad/s²
B. θ = 14.1 rad
C. θ = 2.24 rev
Explanation:
A.
We can use the first equation of motion to find the acceleration:
where,
ωf = final angular speed = 0 rad/s
ωi = initial angular speed = (30 rpm)(2π rad/1 rev)(1 min/60 s) = 3.14 rad/s
t = time = 3 s
α = angular acceleration = ?
Therefore,
<u>α = - 1.047 rad/s²</u>
B.
We can use the second equation of motion to find the angular distance:
<u>θ = 14.1 rad</u>
C.
θ = (14.1 rad)(1 rev/2π rad)
<u>θ = 2.24 rev</u>
Answer:
The effect of gravitation is more in liquid than on solid because inter molecular force of attraction is less in liquid and it is weak than that of solid. ... Whereas in solid the molecule are densely packed together an the inter molecular forces are constantly acting upon one another, this results in higher forces.
Answer:
v = 7.67 m/s for L= 1m
Explanation:
Let's use the conservation of mechanical energy, at the highest point and the lowest point
Initial. Vertical ruler
Em₀ = mg h
Final. Just before touching the floor
= K = ½ I w²
Em₀ = 
m g h = ½ I w²
The moment of inertia of a ruler that turns on one end is
I = 1/3 m L²
Let's replace
m g h = ½ (1/3 m L²) w²2
g h = 1/6 L² w²
They ask for the speed of the end so the height h is equal to the length of the ruler
g L = 1/6 L² w²
The linear and angular variables are related
v = w r
w = v / r
In this case the point of interest a in strangers r = L
g L = 1/6 L² v² / L²
v = √ 6 g L
Let's calculate
Assume that the length of the meter is L = 1 m
v = √ (6 9.8 1)
v = 7.67 m/s