Answer:
a)15 N
b)12.6 N
Explanation:
Given that
Weight of block (wt)= 21 N
μs = 0.80 and μk = 0.60
We know that
Maximum value of static friction given as
Frs = μs m g = μs .wt
by putting the values
Frs= 0.8 x 21 = 16.8 N
Value of kinetic friction
Frk= μk m g = μk .wt
By putting the values
Frk= 0.6 x 21 = 12.6 N
a)
When T = 15 N
Static friction Frs= 16.8 N
Here the value of static friction is more than tension T .It means that block will not move and the value of friction force will be equal to the tension force.
Friction force = 15 N
b)
When T= 35 N
Here value of tension force is more than maximum value of static friction that is why block will move .We know that when body is in motion then kinetic friction will act on the body.so the value of friction force in this case will be 12.6 N
Friction force = 12.6 N
If the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the paper (represented by the small × ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in direction but not magnitude. The result is uniform circular motion.