To solve this problem we will apply the definitions given in Newtonian theory about the Force of gravity, and the Force caused by weight. Both will be defined below, and in equal equilibrium condition to clear the variable concerning acceleration due to gravity. Finally, with the values provided in the statement, it will be replaced.
The equation for the gravitational force between the Earth and the object on the surface of the Earth is

Where,
G = Universal gravitational constant
= Mass of Earth
= Distance between object and center of earth
= Mass of Object
The equation for the gravitational pulling force on the object due to gravitational acceleration is

Equation the two expression we have


This the acceleration due to gravity which is composite constant.
Replacing with our values we have then


The value of composite constant is
. Here, the composite constant is nothing but the acceleration due to gravity which is constant always.
Given that,
Energy 
Surface temperature = 11000 K
Emissivity e =1
(a). We need to calculate the radius of the star
Using formula of energy



Put the value into the formula


(b). Given that,
Radiates energy 
Temperature T = 10000 K
We need to calculate the radius of the star
Using formula of radius

Put the value into the formula


Hence, (a). The radius of the star is 
(b). The radius of the star is 
D will hit last because if air resistance is null then the only force enacting on the balls is the force of gravity. Force of Gravity has an acceleration of 9.81 ms^2 and so every ball had the same acceleration and ball D is the furthest away from the floor.
Potential energy is measured by mass * gravity * height. So, the larger the mass on a roller coaster, the more potential energy it has.
Also, the higher it is, the more potential energy it has.
Answer:
When adolescents get enough calcium during the teen years, they can start out their adult lives with the strong bones and significantly reduce their risk for fractures as an adult. Inadequate calcium intake during adolescence and young adulthood puts individuals at risk for developing osteoporosis later in life.