Answer:
Liquid
Explanation:
Solids do not change shape, so we know it's not a solid.
Gases take the shape of their container, but they also expand to the volume of the container. The substance in this problem has the same volume in different size containers, so we know it's not a gas.
The substance must be a liquid. It takes the shape of its container but has a constant volume.
Answer:
B
Explanation:
i did this in like 7th grade hope its right
Complete question is;
After doing some exercises on the floor, you are lying on your back with one leg pointing straight up. If you allow your leg to fall freely until it hits the floor, what is the tangential speed of your foot just before it lands? Assume the leg can be treated as a uniform rod x = 0.98 m long that pivots freely about the hip.
Answer:
Tangential speed of foot just before it lands is; v = 5.37m/s
Explanation:
Let U (potential energy) be zero on the ground.
So, initially, U = mgh
where, h = 0.98/2 = 0.49m (midpoint of the leg)
Now just before the leg hits the floor it would have kinetic energy as;
K = ½Iω²
where ω = v/r and I = ⅓mr²
So, K = ½(⅓mr²)(v/r)²
K = (1/6) × (mr²)/(v²/r²)
K = (1/6) × mv²
From principle of conservation of energy, we have;
Potential energy = Kinetic energy
Thus;
mgh = (1/6) × mv²
m will cancel out to give;
gh = (1/6)v²
Making v the subject, we have;
v = √6gh
v = √(6 × 9.81 × 0.49)
v = √28.8414
v = 5.37m/s