Sn=2
C and O=6
Im pretty confident yet I forgot a bit.
Answer:
I think the answer is coming up with questions based on observations and reasoning
Answer:
0.825 M
Explanation:
The osmotic pressure is a colligative property, that can be calculated using the following expression.
π = M × R × T
where,
π is the osmotic pressure
M is the molarity
R is the ideal gas constant
T is the absolute temperature (24°C + 273 = 297 K)
M = π / R × T = 20.1 atm / (0.08206 atm.L/mol.K) × 297 K = 0.825 M
Answer:
The value of Kc for the reaction is 3.24
Explanation:
A reversible chemical reaction, indicated by a double arrow, occurs in both directions: reagents transforming into products (
direct reaction) and products transforming back into reagents (inverse reaction)
Chemical Equilibrium is the state in which direct and indirect reactions have the same reaction rate. Then taking into account the rate constant of a direct reaction and its inverse the chemical constant Kc is defined.
Being:
aA + bB ⇔ cC + dD
where a, b, c and d are the stoichiometric coefficients, the equilibrium constant with the following equation:
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
Kc is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients divided by the multiplication of the concentrations of the reagents also raised to their stoichiometric coefficients.
Then, in the reaction 3A(g) + 2B(g) ⇔ 2C(g), the constant Kc is:
![Kc=\frac{[C]^{2} }{[A]^{3} *[B]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7B2%7D%20%7D%7B%5BA%5D%5E%7B3%7D%20%2A%5BB%5D%5E%7B2%7D%20%7D)
where:
- [A]= 0.855 M
- [B]= 1.23 M
- [C]= 1.75 M
Replacing:

Solving you get:
Kc=3.24
<u><em>The value of Kc for the reaction is 3.24</em></u>
Answer:funk
hot dog cat
Explanation:
uhughuhuhuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu