Explanation:
Elements that belong to same group contains same number of valence electrons. Hence, they tend to show similar chemical properties.
When we move across a period then number of electrons get added to the same shell. As a result, there will be no increase in size of elements.
Also, metals are the elements that belong to group 1, 2 and d-block elements are also known as metals. Metallic character of elements decreases when we move left to right in a periodic table.
As most reactive metals are placed on the left side of periodic table.
Since, size of elements increases on moving down the group. So, an element is able to easily lose its valence electrons because of less force of attraction between its nucleus and valence electrons.
As a result, there will be increase in reactivity of metals on moving down the group.
Thus, we can conclude that given sentences are as follows.
- Elements in the same group have the same number of valence electrons.
-
Elements in the same period have the same number of electron shells.
-
Metallic elements become less reactive as you move left to right in a period.
-
Metallic elements become more reactive as you move top to bottom in a group.
Answer:
The order will be:
CCH > CHCH₂ > CH₂CH₃> CH₃
Explanation:
According to Cahn-Ingold-Prelog system we rank the groups based on the atomic number of directly attached atom with the chiral carbon.
For example: between C and H, we rank Carbon first.
If the same atoms are attached for different groups then we prioritized based on the second element with highest atomic number.
For example:
Among CH₃ and C₂H₅, the priority will be given to C₂H₅.
If an atom is double or triple bonded to the directly attached atom then each pi bond is considered to be a new atom.
Hence CH=CH₂ means, that there are two carbons attached to CH carbon.
So the order based on above selection rules will be:
CCH > CHCH₂ > CH₂CH₃> CH₃
Answer:
sound waves travel.faster through materials that are more dense
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>