A boy shooting a rubber band across the classroom -->
Elastic potential energy transformed into kinetic energy
<span>The initial energy is the energy stored in the muscles of the boy's arm, which is elastic potential energy. This is converted into motion of the rubber, therefore kinetic energy
A child going down a slide on a playground --> </span>Gravitational potential energy transformed into kinetic energy
On top of the slide, all the energy of the child is gravitational potential energy due to its height with respect to the ground (E=mgh). when it moves down the slide, this is converted into kinetic energy, because the child acquires a speed v (E=1/2 mv^2)
<span>
Rubbing your hands together to warm them on a cold day --> </span>Kinetic energy being transformed into thermal energy <span>
When rubbing hands, we are moving them (kinetic energy), and this energy raises the temperature of the hand's surface (thermal energy)
Turning on a battery operated light --> </span>
Chemical potential energy transformed into radiant energy <span>
A battery works by mean of chemical reactions (chemical potential energy), producing light (so, emitting energy by radiation, i.e. radiant energy)
Using a dc electric motor --> </span> Electrical energy transformed into kinetic energy<span>
A dc electric motor works using currents (so, electrical energy), and the energy produced can be used for example to accelerate a car (kinetic energy)
Using a gas power heater to warm a room --> </span>Chemical potential energy transformed into thermal energy
<span>A gas power heater burns gases (so, chemical reaction, i.e. chemical potential energy) to raise the temperature of the room (thermal energy)
Using a hand crank generator to produce electric current --> Kinetic energy transformed into electrical energy
In a hand-crank generator, the handle is being rotated (kinetic energy) in order to produce an electric current (electrical energy)
Using the light in your room that is plugged into the wall --> </span>Electrical energy transformed into radiant energy
<span>The lamp works by using electrical current flowing into a resistor (electrical energy) and it produces light, so it emits energy by electromagnetic radiation (radiant energy)
</span> <span>
</span>
Answer:
The rope must have a force of 10084,21 N
Explanation
Acceleration calculation
The car acceleration is equal to the acceleration of the truck
ac: car acceleration
at: truck acceleration
)
equation(1)
Known information:
vi = Initial speed = 0, ti = initial time = 0
vf = Final speed = 13
, t = final time =5 s
We replaced the known information in the equation(1):


Dynamic analysis
The forces acting on the car are the following:
Wc: Car weight
N: normal force, road force on the car
Ff: Friction force
T: Force of tension
Car weight calculation:

mc = Car mass = 2230kg
g = Gravity acceleration=9.8 


Normal force calculation:
Newton's first law




Friction force calculation (Ff):
We have the formula to calculate the friction force:
Ff = μk * N Equation (3)
μk kinetic coefficient of friction
We know that μk = 0.373and N= 21854N ,then:


Calculation of the tension force in the rope (T):
Newton's Second law



T=10084,21 N
Answer: The rope must have a force of 10084,21 N
He can throw the hammer in the direction opposite to the direction he wants to travel in. The hammer will exert an equal and opposite force on him, as per Newton's third law, and this will help him move towards the space station.
The indicated data are of clear understanding for the development of Airy's theory. In optics this phenomenon is described as an optical phenomenon in which The Light, due to its undulatory nature, tends to diffract when it passes through a circular opening.
The formula used for the radius of the Airy disk is given by,

Where,
Range of the radius
wavelength
f= focal length
Our values are given by,
State 1:



State 2:



Replacing in the first equation we have:


And also for,


Therefor, the airy disk radius ranges from
to 
1. Vpa = 180m/s. @ 0 deg.
Vag = 40m/s @ 120 deg,CCW.
<span>
Vpg = Vpa + Vag,
Vpg = (180 + 40cos120) + i40sin120,
Vpg = 160 + i34.64,
Vpg=sqrt((160)^2 + (34.64)^2)=163.7m/s.
</span>
<span>2. tanA = Y / X = 34.64 / 160 = 0.2165,
A = 12.2 deg,CCW. = 12.2deg. North of
East. </span>
3. 1 hr = 3600s. <span>d = Vt = 163.7m/s * 3600s = 589,320m.
hope this helps</span>