Answer:
Explanation: If a net force of 50 N pulls on a 10 kg object, how much acceleration will it cause? Then an answer is possible. Equation: Net force = mass * acceleration.
I’m not sure maybe attach a image or something
Answer:
The answer is Kinetic Energy
Explanation:
Answer:
The speed will be "3.4×10⁴ m/s²".
Explanation:
The given values are:
Angular speed,
w = 7200 rpm
i.e.,
= 
= 
Speed from the center,
r = 6.0 cm
As we know,
⇒ Linear speed, 
On putting the estimated values, we get


Now,
Acceleration on disk will be:
⇒ 


The wavelength of the standing wave at fourth harmonic is; λ = 0.985 m and the frequency of the wave at the calculated wavelength is; f = 36.84 Hz
Given Conditions:
mass of string; m = 0.0133 kg
Force on the string; F = 8.89 N
Length of string; L = 1.97 m
1. To find the wavelength at the fourth normal node.
At the fourth harmonic, there will be 2 nodes.
Thus, the wavelength will be;
λ = L/2
λ = 1.97/2
λ = 0.985 m
2. To find the velocity of the wave from the formula;
v = √(F/(m/L)
Plugging in the relevant values gives;
v = √(8.89/(0.0133/1.97)
v = 36.2876 m/s
Now, formula for frequency here is;
f = v/λ
f = 36.2876/0.985
f = 36.84 Hz
Read more about Harmonics of standing waves at; brainly.com/question/10274257
#SPJ4