Answer:

Explanation:
Hello,
In this case, since the dissociation of gold (V) oxalate is:

In such a way, the equilibrium expression is:
![Ksp=[Au^{5+}]^2[(C_2O_4)^{2-}]^5](https://tex.z-dn.net/?f=Ksp%3D%5BAu%5E%7B5%2B%7D%5D%5E2%5B%28C_2O_4%29%5E%7B2-%7D%5D%5E5)
Thus, since the molar solubility of the gold (V) oxalate is computed by considering its molar mass (834 g/mol):
![[Au_2(C_2O_4)_5]=2.58\frac{g}{L} *\frac{1mol}{834g} =3.09M](https://tex.z-dn.net/?f=%5BAu_2%28C_2O_4%29_5%5D%3D2.58%5Cfrac%7Bg%7D%7BL%7D%20%2A%5Cfrac%7B1mol%7D%7B834g%7D%20%3D3.09M)
In such a way, since gold (V) is in a 2:1 molar ratio with the salt and the oxalate in a 5:1 in the chemical reaction, the corresponding concentrations at equilibrium are:
![[Au^{5+}]=3.09x10^{-3}\frac{mol}{L} *\frac{2molAu^{5+}}{1mol} =6.19x10^{-3}M](https://tex.z-dn.net/?f=%5BAu%5E%7B5%2B%7D%5D%3D3.09x10%5E%7B-3%7D%5Cfrac%7Bmol%7D%7BL%7D%20%2A%5Cfrac%7B2molAu%5E%7B5%2B%7D%7D%7B1mol%7D%20%3D6.19x10%5E%7B-3%7DM)
![[(C_2O_4)^{2-}]=3.09x10^{-3}\frac{mol}{L} *\frac{5mol(C_2O_4)^{2-}}{1mol} =0.0155M](https://tex.z-dn.net/?f=%5B%28C_2O_4%29%5E%7B2-%7D%5D%3D3.09x10%5E%7B-3%7D%5Cfrac%7Bmol%7D%7BL%7D%20%2A%5Cfrac%7B5mol%28C_2O_4%29%5E%7B2-%7D%7D%7B1mol%7D%20%3D0.0155M)
Therefore, the solubility product turns out:

Regards.