Answer:
Interneurons
Explanation:
An interneuron or integrative neuron is a central nervous system neuron, usually small and short axon, that interconnects with other neurons; but never with sensory receptors or muscle fibers, allowing more complex functions.
The interneuron, also called the association neuron, has the function of analyzing sensory information and storing part of it. It also acts on reflex acts, transforming a stimulus in response at the level of the spinal cord. They are located between sensory and motor neurons and are located in the upper nerve centers. Interneurons are multipolar neurons, which connect afferent neurons with efferent neurons in the neuronal or nerve tracts. In other words, they function as a communicational bridge, intercommunicating sensory neurons with motor neurons. Like motor cells, interneurons are only found in the central nervous system. In contrast to the peripheral nervous system, all CNS neurons appear to be interneurons, as they are in communication with many other neurons. However, the term "interneuron" refers to neurons that have axon and dendritic extensions of local extension and not distant, that is, short.
Answer:
a. 4.733 × 10⁻¹⁹ J = 2.954 eV b i. yes ii. 0.054 eV = 8.651 × 10⁻²¹ J
Explanation:
a. Find the energy of the incident photon.
The energy of the incident photon E = hc/λ where h = Planck's constant = 6.626 × 10⁻³⁴ Js, c = speed of light = 3 × 10⁸ m/s and λ = wavelength of light = 420 nm = 420 × 10⁻⁹ m
Substituting the values of the variables into the equation, we have
E = hc/λ
= 6.626 × 10⁻³⁴ Js × 3 × 10⁸ m/s ÷ 420 × 10⁻⁹ m
= 19.878 × 10⁻²⁶ Jm ÷ 420 × 10⁻⁹ m
= 0.04733 × 10⁻¹⁷ J
= 4.733 × 10⁻¹⁹ J
Since 1 eV = 1.602 × 10⁻¹⁹ J,
4.733 × 10⁻¹⁹ J = 4.733 × 10⁻¹⁹ J × 1 eV/1.602 × 10⁻¹⁹ J = 2.954 eV
b. i. Is this energy enough for an electron to leave the atom
Since E = 2.954 eV is greater than the work function Ф = 2.9 eV, an electron would leave the atom. So, the answer is yes.
ii. What is its maximum energy?
The maximum energy E' = E - Ф = 2.954 - 2.9
= 0.054 eV
= 0.054 × 1 eV
= 0.054 × 1.602 × 10⁻¹⁹ J
= 0.08651 × 10⁻¹⁹ J
= 8.651 × 10⁻²¹ J
Answer: The mass of the sculpture is 11.8kg
Explanation:
Using the equation of fundamental frequency of a taut string.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = Tension in the string = Mg
M represent the mass of the substance (sculpture) =?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= mass density = mass of string /Length of string
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
80= 1/(2*0.9) √(T/0.0056)
144= √(T/0.0056)
Square both sides
20736= T/0.0056
T= 116.12N
Recall that T =Mg
116.12= M * 9.8
M=116.12/9.8
M= 11.8kg
Therefore the mass of the sculpture is 11.8kg
Answer: Step Ladders
In general ladders are with inclined or vertical set of steps or rungs between two upright lengths of metal or wood. Ladders used for climbing up and down.
<u>Step ladders :</u>
It is a self supporting portable ladder, most commonly used in industries. Self-supporting means it does not need any support to lean. So this ladder can be used any where in the rooms. For example middle of the room where support is not available. Also this ladder is non-adjustable flat steps and hinged back.