Answer:
An unknown number of identical light bulbs are connected to a 15 V battery in parallel. The current through the battery is 2 A. If the light bulbs are connected to the battery in series, the current through the battery is 5 mA. How many bulbs are there?
3 bulbs are there from the analogy given above
Explanation:
By conducting exhaustive, high-intensity online research for about 15 seconds, I found a source that says the speed of sound in copper is 4600 m/s. (You could easily have completed the same research project in about 1/3 of the time it took you to type and post the question here.)
Time it takes = (distance) / (speed)
Time = (25,000 meters) / (4600 m/s)
Time = (25 / 4.6) km-sec/km
<em>Time = 5.43 seconds </em>
Answer:
The work done by the applied force is 259.22 J.
Explanation:
The work done by the applied force is given by:

Where:
F: is the applied horizontal force = 108.915 N
d: is the distance = 2.38 m
Hence, the work is:

Therefore, the work done by the applied force is 259.22 J.
I hope it helps you!
In electricity, the most famous and basic equation is the Ohm's Law which relates the parameters voltage, current and resistance. One form of this law as written in equation is V = IR, where V is the voltage in volts, I is the current in amperes and R is the resistance in ohms. These parameters depends in the arrangements, whether it's series or parallel.
In a series connection, the voltage is greater across a high-resistance resistor. Therefore, the voltage is much greater for the 20-ohm resistor. However,if it is a parallel circuit, the voltage is just the same for both resistors.
Answer:
Part a)

Part b)
t = 12 s
Explanation:
Part a)
Tension in the rope at a distance x from the lower end is given as

so the speed of the wave at that position is given as

here we know that

now we have


Part b)
time taken by the wave to reach the top is given as



