Hello!
In a thermostat, the property of the bimetallic coil that allows it to contract and expand is that The two metals absorb different amounts of thermal energy.
This bimetallic coil is used to transform thermal energy into mechanical movement. Two metals with different thermal expansivity are joined together parallelly and the changes of temperature cause bending in different directions depending on if the temperature is rising or descending.
The differences in the thermal energy absorption of the two metals are the basis for the mechanism of this device.
To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
The answer to this question is B, Reacts with sunlight.
The 2 main properties of substances are their physical properties and chemical properties.
Physical properties are some observable/measurable characteristics, such as their color, mass, state, melting point, conductivity etc.
Meanwhile, for chemical properties, they're about how the substance reacts with other substances, such as metals react with acid to form hydrogen. And by the word "react", it means there's no way turn the reaction product back to the original substance without using chemical methods such as heating or electrolysis.
Therefore, all the choices above are physical properties of hydrogen peroxide except for B, as it is the only choice that relates to the substance reacting to another substance.
Answer: They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.
Explanation:
According to the equivalence principle postulated by Einstein's Theory of General Relativity, acceleration in space and gravity on Earth have the same effects on objects.
To understand it better, regarding to the equivalence principle, Einstein formulated the following:
A gravitational force and an acceleration in the opposite direction are equivalent, both have indistinguishable effects. Because the laws of physics must be accomplished in all frames of reference.
Hence, according to general relativity, gravitational force and acceleration in the opposite direction (an object in free fall, for example) have the same effect. This makes sense if we deal with gravity not as a mysterious atractive force but as a geometric effect of matter on spacetime that causes its deformation.