Answer:
17.907082 unit
Step-by-step explanation:
According to the Question,
Given, A circle with centre F, ∠EFG=54 and EF=19 .
length of arc EG = Radius(EF) × ∠EFG(in Radian)
- We Know, 1 degree = 0.0174533 Radian
- 54 degree = 0.942478 Radian
length of arc EG = 19 x 0.942478 ⇔ 17.907082 unit
(For Diagram please find in attachment)
Answer: 13%
Step-by-step explanation:
We know that the formula to find the simple interest :
, where P is the principal amount , r is rate (in decimal )and t is the time period (in years).
Given : Albert borrowed $19,100 for 4 years. The simple interest is $9932.00. Find the rate.
i.e. P = $19,100 and t= 4 years and I = $9932.00
Now, Substitute all the values in the formula , we get
In percent,
Hence, the rate of interest = 13%
On Brainly, you ask questions associated with either homework, things your learning in class or questions you have in any of the categories listed. You also want to help others by answering their problems.
It is 2 that what i got and i think i got it write if not delete
Step-by-step explanation:
La posici´on de una part´ıcula que se mueve unidimensionalmente esta definida por la ecuaci´on:
x(t) = 2t
3 − 15t
2 + 24t + 4 donde 0x
0 y
0
t
0
se expresan en metros y segundos respectivamente. Determine:
a. ¿Cu´ando la velocidad es cero?
b. La posici´on y la distancia total recorrida cuando la aceleraci´on es cero.
Soluci´on:
a. Recordemos que:
v(t) =
dx
dt =
d
dt(2t
3 − 15t
2 + 24t + 4) = 6t
2 − 30t + 24
Sea t
0
el tiempo en que la velocidad se anula, entonces v(t
0
) = 0.
De este modo:
0 = v(t
0
) = 6(t
0
)
2 − 30(t
0
) + 24 = 6[(t
0
)
2 − 5(t
0
) + 4] = 6[(t
0
) − 4][(t
0
) − 1]
As´ı tenemos que:
t
0
1 = 4, t
0
2 = 1
De este modo, tenemos que la velocidad se anula al primer segundo y a los cuatro segundos.
b. Recordemos que:
a(t) =
dv
dt =
d
dt(6t
2 − 30t + 24) = 12t − 30
Ahora sea t
0
el instante en que la aceleraci´on se anula, entonces a(t
0
) = 0
Ahora:
0 = a(t
0
) = 12t
0 − 30
As´ı tenemos que: t
0 =
30
12 =
5
2
Por lo tanto, la posici´on en este instante es:
x(t
0
) = x
5
2
= 2
5
2
3 − 15
5
2
2 + 24
5
2
+ 4 = 125
4 − 3
125
4 + 60 + 4 = −2
125
4 + 64 = −
125
2 +
128
2 =
3
2
De este modo, la posici´on de la part´ıcula cuando la aceleraci´on es cero es de 3
2 metros.
Adem´as la distancia total recorrida esta dada por:
distancia = |x(t
0
) − x(0)| = |
3
2 − 4| =
5
2
Finalmente la distancia total recorrida es: 5