The victim's head is accelerated faster and harder than the
torso when the victom is involved in a typical rear-end collision.
The traffic accident where a vehicle crashes into another
vehicle that is directly in front of it is called a rear-end collision.
One of the most common accident in the United States is the
rear-end collision, and in a lot of cases, rear-end collisions are prompted by
drivers who are inattentive, unfavorable conditions of the road, and poor
following distance.
<span>An enough room in front of your car so you can stop when the
car in front of you stops suddenly is one basic driving rule. The person isn’t
driving safely if he / she is behind you and couldn’t stop.</span>
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
Answer:
Dx = -0.5
Dy = -0.25
Explanation:
Two vectors are given in rectangular components form as follows:
A = i + 6j
B = 3i - 7j
It is also given that:
A - B - 4D = 0
so, we solve this to find D vector:
(i + 6j) - (3i - 7j) - 4D = 0
- 2i - j = 4D
D = - (2/4)i - (1/4)j
D = - (1/2)i - (1/4)j
<u>D = - 0.5i - 0.25j</u>
Therefore,
<u>Dx = -0.5</u>
<u>Dy = -0.25</u>
I attached a picture of the diagram associated with this question.
Now,
When we check the vertical components of the tension in the rope, we will find that we have two equal components acting upwards.
These two components support the weight and each of them has a value of TcosΘ
The net force acting on the body is zero.
Fnet=Force of tension acting upwards-Force due to weight acting downwards
0 = 2TcosΘ -W
W = 2TcosΘ
T = W / 2cosΘ
The uniform microwave radiation remaining from the Big Bang.
So, your body is always having background radiation and that means space!