Answer:
Final velocity of the car will be -9.28 m/sec
Explanation:
We have given that the car starts from the rest so initial velocity of the car u = 0 m /sec
Acceleration of the car
in negative direction so acceleration will be 
From first equation of motion we know that
v = u+at
So 
So final velocity will be -9.28 m/sec
12.00 min = 0.2 hr
8.00 min = 0.15 hr
Total distance:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) + (20.0 km/hr) (0.2 hr)
= 8.25 km
Average speed:
(10.0 km/hr + 15.0 km/hr + 20.0 km/hr) / 3
= 15 km/hr
Change in position:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) - (20.0 km/hr) (0.2 hr)
= 0.25 km
Average velocity:
(10.0 km/hr + 15.0 km/hr - 20.0 km/hr) / 3
≈ 1.67 m/s
Answer:
51.94°
Explanation:
= Unpolarized light
= Light after passing though second filter = 
Polarized light passing through first filter

Polarized light passing through second filter

The angle between the two filters is 51.94°
Answer:
A
B

C

D

Explanation:
Considering the first question
From the question we are told that
The spring constant is 
The potential energy is 
Generally the potential energy stored in spring is mathematically represented as 
=>
=>
=>
Considering the second question
From the question we are told that
The mass of the dart is m = 0.050 kg
Generally from the law of energy conservation

=> 
=> 
Considering the third question
The height at which the dart was fired horizontally is 
Generally from the law of energy conservation

Here KE is kinetic energy of the dart which is mathematical represented as

=> 
=> 
=> 
Considering the fourth question
Generally the total time of flight of the dart is mathematically represented as

=> 
=> 
Generally the horizontal distance from the equilibrium position to the ground is mathematically represented as

=> 
=> 