Answer:
0.382g
Explanation:
Step 1: Write the reduction half-reaction
Al³⁺(aq) + 3 e⁻ ⇒ Al(s)
Step 2: Calculate the mass of Al produced when a current of 100. A passes through the cell for 41.0 s
We will use the following relationships.
- 1 mole of electrons has a charge of 96486 C (Faraday's constant)
- 1 mole of Al is produced when 3 moles of electrons pass through the cell.
- The molar mass of Al is 26.98 g/mol.
The mass of Al produced is:

Ph 2 will ahve more strength due to the fact that its more acidic compared to pH 5.
the lower the number of a pH, the more it is heading towards being acidic, but the higher the number, the more it heads towards being an alkali. here is a ppt i made along time ago. hope it can help you . have a nice day
There are 2 possible answers here : b and d.
The Ideal Gas Equation is : <u>PV = nRT</u>
<u />
Here, when pressure is increased and temperature is lowered, the volume of the molecules will substantially decrease, which means it has deviated from ideal behavior.
Answer : The balanced chemical reaction will be,

Explanation :
Balanced chemical reaction : It is defined as the reaction in which the number of atoms of individual elements present on reactant side must be equal to the product side.
If the amount of atoms of each type on the left and right sides of a reaction differs then to balance the equation by adding coefficient in the front of the elements or molecule or compound in the chemical equation.
The coefficient tell us about that how many molecules or atoms present in the chemical equation.
The given chemical reaction is,

This reaction is an unbalanced chemical reaction because in this reaction number of hydrogen bromine atoms are not balanced.
In order to balance the chemical equation, the coefficient '2' put before the
and we get the balanced chemical equation.
The balanced chemical reaction will be,

Answer:
.0556 L
Explanation:
First, convert the 1.35 M to 1.35 mol/L in order for the units to correctly cancel out.
Then, multiply (0.0725 moles Na2CO3/1) times (L/ 1.35 mol).
Finally, the answer will be .0556 L.
<h3 />