Answer:
Both b and d can be correct
Explanation:
Generally, diffusion does not require energy (<em>making option a wrong</em>) because it is the movement of particles from a region of high concentration to a region of low concentration hence diffusion moves particles in the direction of a concentration gradient. An example of this is the passive transport (for instance, uptake of glucose by a liver cell).
However, in some cases, when diffusion is against the concentration gradient (i.e when particles move from a region of low concentration to a region of high concentration), diffusion will require energy in a case like this (<em>making option c wrong</em>). An example of this is active transport (transport of protein called sodium-potassium pump which involves pumping of potassium into the cell and sodium out of the cell).
The explanation above shows that diffusion can require energy to move particles (in or out) of the cell through the cell membrane.
Answer:
Use a ratio of 0.44 mol lactate to 1 mol of lactic acid
Explanation:
John could prepare a lactate buffer.
He can use the Henderson-Hasselbalch equation to find the acid/base ratio for the buffer.
![\text{pH} = \text{pK}_{\text{a}} + \log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}}\\\\3.5 = 3.86 + \log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}}\\\\\log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}} = 3.5 - 3.86 = -0.36\\\\\dfrac{\text{[A$^{-}$]}}{\text{[HA]}} = 10^{-0.36} = \mathbf{0.44}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20%5Ctext%7BpK%7D_%7B%5Ctext%7Ba%7D%7D%20%2B%20%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%5C%5C%5C%5C3.5%20%3D%203.86%20%2B%20%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%5C%5C%5C%5C%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%203.5%20-%203.86%20%3D%20-0.36%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%2010%5E%7B-0.36%7D%20%3D%20%5Cmathbf%7B0.44%7D)
He should use a ratio of 0.44 mol lactate to 1 mol of lactic acid.
For example, he could mix equal volumes of 0.044 mol·L⁻¹ lactate and 0.1 mol·L⁻¹ lactic acid.
Answer:
Hence the evaporation rate in pints per minute is 0.001583.
Explanation:
Now,
1.5 gallons of paint are used.
It has 5% solid, so total 95% of 1.5 gallon can evaporate(only the solvent part will evaporate).
95% of 1.5 gallon=(95/100)*1.5 = 1.425 gallons.
1gallon = 8 pints.
So 1.425 gallons=8*1.425 pints
=11.4 pints.
Evaporation requires 2 hours. That is 3600*2 seconds = 7200 seconds.
So evaporation rate= 11.4 pints/7200 seconds.
=0.001583 pints per second
Answer:
C. Carbon dioxide
Explanation:
Carbon dioxide is one of the end-product of combustion reactions involving many fuels today.
With the rapid increase in urbanization and technological development, man demand for energy increased tremendously. The discovery of fossil fuels paved the way for the astronomical increase in the concentration of carbon dioxide in the atmosphere. The burning of fossil fuels like coal and oil invovles the process where the carbon atoms present in these fuels combine with oxygen in the air to make CO2. This has resulted in an increase in the concentration of atmospheric carbon dioxide (CO2).
The burning fossil fuels for electricity, industry, heat, and transportation are the major sources of the emossion of carbon dioxide.
Also, the cutting down of trees for paper production, building construction and for the establishment of settlements also increase the concentration of carbon dioxide in the atmosphere. Trees are help remove carbon dioxide from the atmosphere through the process of photosynthesis. However, when these trees are cut down, carbon dioxide accumulates in the atmosphere.