the answer is (c)
After the vehicle is involved in a car accident or fire
The weight of the specimen in SSD condition is 373.3 cc
<u>Explanation</u>:
a) Apparent specific gravity = ![\frac{A}{A-C}](https://tex.z-dn.net/?f=%5Cfrac%7BA%7D%7BA-C%7D)
Where,
A = mass of oven dried test sample in air = 1034 g
B = saturated surface test sample in air = 1048.9 g
C = apparent mass of saturated test sample in water = 975.6 g
apparent specific gravity =
= ![\frac{1034}{1034-675 \cdot 6}](https://tex.z-dn.net/?f=%5Cfrac%7B1034%7D%7B1034-675%20%5Ccdot%206%7D)
Apparent specific gravity = 2.88
b) Bulk specific gravity ![G_{B}^{O D}=\frac{A}{B-C}](https://tex.z-dn.net/?f=G_%7BB%7D%5E%7BO%20D%7D%3D%5Cfrac%7BA%7D%7BB-C%7D)
![G_{B}^{O D}=\frac{1034}{1048.9-675 \cdot 6}](https://tex.z-dn.net/?f=G_%7BB%7D%5E%7BO%20D%7D%3D%5Cfrac%7B1034%7D%7B1048.9-675%20%5Ccdot%206%7D)
= 2.76
c) Bulk specific gravity (SSD):
![G_{B}^{S S D}=\frac{B}{B-C}](https://tex.z-dn.net/?f=G_%7BB%7D%5E%7BS%20S%20D%7D%3D%5Cfrac%7BB%7D%7BB-C%7D)
![=\frac{1048 \cdot 9}{1048 \cdot 9-675 \cdot 6}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1048%20%5Ccdot%209%7D%7B1048%20%5Ccdot%209-675%20%5Ccdot%206%7D)
= 2.80
d) Absorption% :
![=\frac{B-A}{A} \times 100 \%](https://tex.z-dn.net/?f=%3D%5Cfrac%7BB-A%7D%7BA%7D%20%5Ctimes%20100%20%5C%25)
![=\frac{1048 \cdot 9-1034}{1034} \times 100](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1048%20%5Ccdot%209-1034%7D%7B1034%7D%20%5Ctimes%20100)
Absorption = 1.44 %
e) Bulk Volume :
![v_{b}=\frac{\text { weight of dispaced water }}{P \omega t}](https://tex.z-dn.net/?f=v_%7Bb%7D%3D%5Cfrac%7B%5Ctext%20%7B%20weight%20of%20dispaced%20water%20%7D%7D%7BP%20%5Comega%20t%7D)
![=\frac{1048 \cdot 9-675 \cdot 6}{1}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1048%20%5Ccdot%209-675%20%5Ccdot%206%7D%7B1%7D)
= ![373.3 cc](https://tex.z-dn.net/?f=373.3%20cc)
Answer:
![L=107.6m](https://tex.z-dn.net/?f=L%3D107.6m)
Explanation:
Cold water in: ![m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C](https://tex.z-dn.net/?f=m_%7Bc%7D%3D1.2kg%2Fs%2C%20C_%7Bc%7D%3D4.18kJ%2Fkg%5C%C2%B0C%2C%20T_%7Bc%2Cin%7D%3D20%5C%C2%B0C%2C%20T_%7Bc%2Cout%7D%3D80%5C%C2%B0C)
Hot water in: ![m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C](https://tex.z-dn.net/?f=m_%7Bh%7D%3D2kg%2Fs%2C%20C_%7Bh%7D%3D4.18kJ%2Fkg%5C%C2%B0C%2C%20T_%7Bh%2Cin%7D%3D160%5C%C2%B0C%2C%20T_%7Bh%2Cout%7D%3D%3F%5C%C2%B0C)
![D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m](https://tex.z-dn.net/?f=D%3D1.5cm%3D0.015m%2C%20U%3D649W%2Fm%5E%7B2%7DK%2C%20LMTD%3D%3F%5C%C2%B0C%2C%20A_%7Bs%7D%3D%3Fm%5E%7B2%7D%2CL%3D%3Fm)
Step 1: Determine the rate of heat transfer in the heat exchanger
![Q=m_{c}C_{c}(T_{c,out}-T_{c,in})](https://tex.z-dn.net/?f=Q%3Dm_%7Bc%7DC_%7Bc%7D%28T_%7Bc%2Cout%7D-T_%7Bc%2Cin%7D%29)
![Q=1.2*4.18*(80-20)](https://tex.z-dn.net/?f=Q%3D1.2%2A4.18%2A%2880-20%29)
![Q=1.2*4.18*(80-20)](https://tex.z-dn.net/?f=Q%3D1.2%2A4.18%2A%2880-20%29)
![Q=300.96kW](https://tex.z-dn.net/?f=Q%3D300.96kW)
Step 2: Determine outlet temperature of hot water
![Q=m_{h}C_{h}(T_{h,in}-T_{h,out})](https://tex.z-dn.net/?f=Q%3Dm_%7Bh%7DC_%7Bh%7D%28T_%7Bh%2Cin%7D-T_%7Bh%2Cout%7D%29)
![300.96=2*4.18*(160-T_{h,out})](https://tex.z-dn.net/?f=300.96%3D2%2A4.18%2A%28160-T_%7Bh%2Cout%7D%29)
![T_{h,out}=124\°C](https://tex.z-dn.net/?f=T_%7Bh%2Cout%7D%3D124%5C%C2%B0C)
Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)
![dT_{1}=T_{h,in}-T_{c,out}](https://tex.z-dn.net/?f=dT_%7B1%7D%3DT_%7Bh%2Cin%7D-T_%7Bc%2Cout%7D)
![dT_{1}=160-80](https://tex.z-dn.net/?f=dT_%7B1%7D%3D160-80)
![dT_{1}=80\°C](https://tex.z-dn.net/?f=dT_%7B1%7D%3D80%5C%C2%B0C)
![dT_{2}=T_{h,out}-T_{c,in}](https://tex.z-dn.net/?f=dT_%7B2%7D%3DT_%7Bh%2Cout%7D-T_%7Bc%2Cin%7D)
![dT_{2}=124-20](https://tex.z-dn.net/?f=dT_%7B2%7D%3D124-20)
![dT_{2}=104\°C](https://tex.z-dn.net/?f=dT_%7B2%7D%3D104%5C%C2%B0C)
![LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}](https://tex.z-dn.net/?f=LMTD%20%3D%20%5Cfrac%7BdT_%7B2%7D-dT_%7B1%7D%7D%7Bln%28%5Cfrac%7BdT_%7B2%7D%7D%7BdT_%7B1%7D%7D%29%7D)
![LMTD = \frac{104-80}{ln(\frac{104}{80})}](https://tex.z-dn.net/?f=LMTD%20%3D%20%5Cfrac%7B104-80%7D%7Bln%28%5Cfrac%7B104%7D%7B80%7D%29%7D)
![LMTD = \frac{24}{ln(1.3)}](https://tex.z-dn.net/?f=LMTD%20%3D%20%5Cfrac%7B24%7D%7Bln%281.3%29%7D)
![LMTD = 91.48\°C](https://tex.z-dn.net/?f=LMTD%20%3D%2091.48%5C%C2%B0C)
Step 4: Determine required surface area of heat exchanger
![Q=UA_{s}LMTD](https://tex.z-dn.net/?f=Q%3DUA_%7Bs%7DLMTD)
![300.96*10^{3}=649*A_{s}*91.48](https://tex.z-dn.net/?f=300.96%2A10%5E%7B3%7D%3D649%2AA_%7Bs%7D%2A91.48)
![A_{s}=5.07m^{2}](https://tex.z-dn.net/?f=A_%7Bs%7D%3D5.07m%5E%7B2%7D)
Step 5: Determine length of heat exchanger
![A_{s}=piDL](https://tex.z-dn.net/?f=A_%7Bs%7D%3DpiDL)
![5.07=pi*0.015*L](https://tex.z-dn.net/?f=5.07%3Dpi%2A0.015%2AL)
![L=107.57m](https://tex.z-dn.net/?f=L%3D107.57m)
Answer:
The cost and size of materials needed to produce energy
Explanation:
Artificial photosynthesis is a chemical process that uses solar cells instead of chlorophyll to absorb sunlight and convert it into electricity. This process uses artificial leaves that require man-made catalyst to spilt water present in the air into hydrogen and oxygen. It is clear that the reaction requires heat from the sun for energy production thus the technology is expensive to be applied in most areas of the world. Additionally, results obtained from previous undertaken projects of this type has been ineffective and unsustainable because it involves a lot of trial and error.