Using Laplace transform we have:L(x')+7L(x) = 5L(cos(2t))sL(x)-x(0) + 7L(x) = 5s/(s^2+4)(s+7)L(x)- 4 = 5s/(s^2+4)(s+7)L(x) = (5s - 4s^2 -16)/(s^2+4)
=> L(x) = -(4s^2 - 5s +16)/(s^2+4)(s+7)
now the boring part, using partial fractions we separate 1/(s^2+4)(s+7) that is:(7-s)/[53(s^2+4)] + 1/53(s+7). So:
L(x)= (1/53)[(-28s^2+4s^3-4s^2+35s-5s^2+5s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]L(x)= (1/53)[(4s^3 -37s^2 +40s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]
denoting T:= L^(-1)and x= (4/53) T(s^3/(s^2+4)) - (37/53)T(s^2/(s^2+4)) +(40/53) T(s^2+4)-(4/53) T(s^2/s+7) +(5/53)T(s/s+7) - (16/53) T(1/s+7)
X/8 - 10 = x/3
bring the values with the variable on one side
x/3 - x/8 = 10
find a common denominator and subtract these fractions
8x/24 - 3x/24 = -10
now subtract fractions
8x - 3x = 5x
5x/24 = -10
multiply both sides by 24
5x = -240
divide both sides by 5
x = -48
the number is -48
Answer:(gf)(3)=g(3)f(3) g(a)=3a+2 or g(3)=3(3)+2=9+2 =11 f(a)=2a−4 f(3)=2(3)−4=6−4=2 g(3)f(3)=112. Answer
Step-by-step explanation:
Answer:
dimo ba kayang answeran
Step-by-step explanation:
kaya muyan