To solve this problem, all we need to do is just set up a proportion. The two shapes are similar, which means that they are the same shape, but different sizes. Using the wording/letter arrangement in the problem, we can figure out which side of one triangle corresponds to which side of the other triangle.
Triangle LMV (with segments LM, MV, and VL) is similar to triangle UTK (with segments UT, TK, and KU).
Corresponding pairs:
LM(x) : UT(39)
MV(30) : TK(65)
VL : KU
However, we need only be interested in the first two pairs. Here is the proportion with letters:
LM / UT = MV / TK
and as numbers:
x / 39 = 30 / 65
Solve for x:
x / 39 = 30 / 65
Cross multiply:
(x)(65) = (39)(30)
Simplify:
65x = 1170
Divide:
65x/65 = 1170 / 65
Simplify:
x = 18
<h2>Answer:</h2>
The length of side LM (x) in triangle LMV is 18 units.
Answer:
Option c, A square matrix
Step-by-step explanation:
Given system of linear equations are
Now to find the type of matrix can be formed by using this system
of equations
From the given system of linear equations we can form a matrix
Let A be a matrix
A matrix can be written by
A=co-efficient of x of 1st linear equation co-efficient of y of 1st linear equation constant of 1st terms linear equation
co-efficient of x of 2st linear equation co-efficient of y of 2st linear equation constant of 2st terms linear equation
co-efficient of x of 3st linear equation co-efficient of y of 3st linear equation constant of 3st terms linear equation
which is a matrix.
Therefore A can be written as
A=
Matrix "A" is a matrix so that it has 3 rows and 3 columns
A square matrix has equal rows and equal columns
Since matrix "A" has equal rows and columns Therefore it must be a square matrix
Therefore the given system of linear equation forms a square matrix
Answer:
true I'm positive that the correct answer
Remember the formula for calculating volume is: Volume = Area by height. V = A X h.
For a triangle the area is calculated using the formula: Area = half of base by altitude. A = 0.5 X b X a.
So to calculate the volume of a triangular prism, the formula is: V = 0.5 X b X a X h
First substitute
(3)(4)/4
then simplify.
12/4
then solve
3