let two integers be x and y
A.T.Q
x+y= -3
or, x= -3-y(i)
and xy= -18
or,(-3-y)y= -18[by(i)]
or,- -3y-y²= -18
or,-y²= -18+3
or, -y²= -15
or, y²=15
therefore y=✓15
from (i)
x= -3-✓15
y=√15
PT = 15, and TB = 10
Take the 15 from PT, and add the 10 from TB. Which equals 25.
PB = 25
So, 25 is your answer.
Hope this helps! ☺
Answer:
231
Step-by-step explanation:
subtract 700 by 469
Answer:
i think it is b(-22)
Step-by-step explanation:
i hope this helps
To solve, we will follow the steps below:
3x+y=11 --------------------------(1)
5x-y=21 ------------------------------(2)
since y have the same coefficient, we can eliminate it directly by adding equation (1) and (2)
adding equation (1) and (2) will result;
8x =32
divide both-side of the equation by 8
x = 4
We move on to eliminate x and then solve for y
To eliminate x, we have to make sure the coefficient of the two equations are the same.
We can achieve this by multiplying through equation (1) by 5 and equation (2) by 3
The result will be;
15x + 5y = 55 ----------------------------(3)
15x - 3y =63 --------------------------------(4)
subtract equation (4) from equation(3)
8y = -8
divide both-side of the equation by 8
y = -1