Answer:
0.057 M
Explanation:
Step 1: Given data
Solubility product constant (Ksp) for HgBr₂: 2.8 × 10⁻⁴
Concentration of mercury (II) ion: 0.085 M
Step 2: Write the reaction for the solution of HgBr₂
HgBr₂(s) ⇄ Hg²⁺(aq) + 2 Br⁻
Step 3: Calculate the bromide concentration needed for a precipitate to occur
The Ksp is:
Ksp = 2.8 × 10⁻⁴ = [Hg²⁺] × [Br⁻]²
[Br⁻] = √(2.8 × 10⁻⁴/0.085) = 0.057 M
1 molecule CO2 has 2 atoms O.
1 mole CO2 has 2 moles O,
1.5 mole CO2 has 2*1.5 mole O=3.0 mole O
From the calculations, the half life of the material is 6.5 days.
<h3>What is radioactivity?</h3>
The term radioactivity has to do with the spontaneous disintegration of a specie.
Uisng the formula;
N=Noe^-kt
N= amount at time t = 0.135 Ci or 4.995 ×10^9 Bq
No = amount initially present = 1.75 x 10^12 Bq
k = rate constant = ?
t = time taken = 55 days
Hence;
4.995 ×10^9 = 1.75 x 10^12e^-55k
4.995 ×10^9/1.75 x 10^12 = e^-55k
2.85 * 10^-3 = e^-55k
ln2.85 * 10^-3 = -55k
k = ln2.85 * 10^-3/-55
k = 0.1066 day-1
Half life = 0.693/ 0.1066 day-1
= 6.5 days
Learn more about radioactivity:brainly.com/question/1770619
#SPJ1
The molar mass of NH4NO3 in g/mol is 80g/mol.
HOW TO CALCULATE MOLAR MASS:
The molar mass of a compound can be calculated by summing the atomic masses of its constituent elements.
In ammonium nitrate (NH4NO3), there are nitrogen, hydrogen, and oxygen elements.
- Atomic mass of nitrogen = 14
- Atomic mass of oxygen = 16
- Atomic mass of hydrogen = 1
Molar mass of NH4NO3 = 14 + 1(4) + 14 + 16(3)
Molar mass of NH4NO3 = 80g/mol
- Therefore, the molar mass of NH4NO3 in g/mol is 80g/mol.
Learn more about molar mass at: brainly.com/question/8101390?referrer=searchResults
Answer:
Growth rate
Explanation:
The responding variable, also known as the DEPENDENT VARIABLE, is the variable that responds to changes or manipulations made to another variable (independent or manipulable variable) in the experiment. It is the measured variable of an experiment.
According to the hypothesis provided for this investigation, the scientist wants to determine if the amount of fertilizer plants of the same species receive will affect their growth rate when planted in the same condition. This shows that the independent variable is the amount of fertilizer to be used while the RESPONDING VARIABLE OR DEPENDENT VARIABLE is the GROWTH RATE OF THE PLANTS because it responds to the amount of fertilizer.