The circumference of the circle is 10.36
The area of the triangle formed by his path is 34971.98 ft sq to the nearest hundredth.
<h3>What is the Heron's formula?</h3>
The Heron's formula is given as;
√s(s-a)(s-b)(s-c)
where s is half the perimeter of the triangle
WE have been given that horse gallops 200ft, turns and trots 350ft, turns again and travels 410ft to return to the point he started from.
Perimeter of the triangle is given as = 200 + 350 + 410 = 960 ft
Semi perimeter = 960 ft/ 2 = 480 ft
Area = √s(s-a)(s-b)(s-c)
Area = √480 (480 -200)(480 -350)(480 -410)
Area = √480 (280)(130)(70)
Area = √480 (2548000)
Area = 34971.98
The area of the triangle formed by his path is 34971.98 ft sq to the nearest hundredth.
Learn more about the Heron's formula;
brainly.com/question/20934807
#SPJ1
The complete question is
A horse gallops 200ft, turns and trots 350ft, turns again and travels 410ft to return to the point he started from. What is the area of the triangle formed by his path? round to the nearest hundredth.
Answer:
You can use either of the following to find "a":
- Pythagorean theorem
- Law of Cosines
Step-by-step explanation:
It looks like you have an isosceles trapezoid with one base 12.6 ft and a height of 15 ft.
I find it reasonably convenient to find the length of x using the sine of the 70° angle:
x = (15 ft)/sin(70°)
x ≈ 15.96 ft
That is not what you asked, but this value is sufficiently different from what is marked on your diagram, that I thought it might be helpful.
__
Consider the diagram below. The relation between DE and AE can be written as ...
DE/AE = tan(70°)
AE = DE/tan(70°) = DE·tan(20°)
AE = 15·tan(20°) ≈ 5.459554
Then the length EC is ...
EC = AC - AE
EC = 6.3 - DE·tan(20°) ≈ 0.840446
Now, we can find DC using the Pythagorean theorem:
DC² = DE² + EC²
DC = √(15² +0.840446²) ≈ 15.023527
a ≈ 15.02 ft
_____
You can also make use of the Law of Cosines and the lengths x=AD and AC to find "a". (Do not round intermediate values from calculations.)
DC² = AD² + AC² - 2·AD·AC·cos(A)
a² = x² +6.3² -2·6.3x·cos(70°) ≈ 225.70635
a = √225.70635 ≈ 15.0235 . . . feet
N.O = 4
N is midpoint of M.0
Meaning M.N also has to be 4
4+4= 8
N.P = 6
0.P = 2
8+ 2 = 10
If Susan had 2$ and got to 12$ we need to find what multiplied by 2 = 12. So, 12/2=6
If 6x2=12 then 11x6=66
66$