1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
3 years ago
14

27/8+11/3 please help

Mathematics
1 answer:
a_sh-v [17]3 years ago
8 0

Answer:

The answer is 7 1/24

Step-by-step explanation:

27/8 + 11/3

I multipled 27/8 by 3/3 (needed the 8 to become 24)

I multiplied 11/3 by 8/8 (needed the 3 to become 24)

We get:

81/24 + 88/24

Then you add

169/24

Simplify

7 1/24

You might be interested in
This question here ?!
Yanka [14]

Answer:

The answer is 3.19, someone irrationally deleted my answer previously.

Step-by-step explanation:

Simply substract 2.95 from 18.90 and you will get 15.95

Divide this by 5 to get the price of each and you will get $3.19 which is the correct answer.

6 0
3 years ago
If f(x)=x-1/x g(x)=x-1 and h(x)=x+1 what is (g•h•f)(x)
eimsori [14]

Answer:

( f o f )(x) = f ( f (x))

   = f (2x + 3)

   = 2(           ) + 3    ... setting up to insert the input

   = 2(2x + 3) + 3

   = 4x + 6 + 3

   = 4x + 9Step-by-step

explanation:

8 0
3 years ago
Read 2 more answers
Please help me outtttt
QveST [7]

Answer:

C

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Let ∠Q be an acute angle such that tanQ=0.04. Use a calculator to approximate the measure of ∠Q to the nearest tenth of a degree
Digiron [165]

We have been given that ∠Q is an acute angle such that \text{tan}(Q)=0.04. We are asked to find the measure of angle Q to nearest tenth of a degree.

We will use arctan to solve for measure of angle Q as:

Q=\text{tan}^{-1}(0.04)

Now we will use calculator to solve for Q as:

Q=2.290610042639^{\circ}

Upon rounding to nearest tenth of degree, we will get:

Q=2.3^{\circ}

Therefore, measure of angle Q is approximately 2.3 degrees.

7 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • A toaster has 4 slots for bread. Once the toaster is warmed up, it takes 35 seconds to make 4 slices of toast, 70 seconds to mak
    9·1 answer
  • How many fives in 308
    10·2 answers
  • HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP(25 points)
    9·1 answer
  • -2(x+2) &lt; 14<br> What is the answer
    6·1 answer
  • Match the building block of geometry to the statement that defines it
    5·2 answers
  • Elapsed time is 4 hours and 51 minutes, what is the start time?
    11·1 answer
  • Will mark brainliest help asap
    6·1 answer
  • 2x - y = 3<br> x = -2y - 1
    8·1 answer
  • Write a word problem whose solution is (-70)=70.
    7·1 answer
  • 1-37.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!