The following scenarios are pertinent to driving conditions that one may encounter. See the following rules of driving.
<h3>What do you do when the car is forced into the guardrail?</h3>
Best response:
- I'll keep my hands on the wheel and slow down gradually.
- The reason I keep my hands on the steering wheel is to avoid losing control.
- This will allow me to slowly back away from the guard rail.
- The next phase is to gradually return to the fast lane.
- Slamming on the brakes at this moment would result in a collision with the car behind.
Scenario 2: When driving on a wet road and the car begins to slide
Best response:
- It is not advised to accelerate.
- Pumping the brakes is not recommended.
- Even lightly depressing and holding down the brake pedal is not recommended.
- The best thing to do is take one foot off the gas pedal.
- There should be no severe twists at this time.
Scenario 3: When you are in slow traffic and you hear the siren of an ambulance behind
Best response:
- The best thing to do at this moment is to go to the right side of the lane and come to a complete stop.
- This helps to keep the patient in the ambulance alive.
- It also provide a clear path for the ambulance.
- Moving to the left is NOT recommended.
- This will exacerbate the situation. If there is no place to park on the right shoulder of the road, it is preferable to stay in the lane.
Learn more about rules of driving. at;
brainly.com/question/8384066
#SPJ1
Answer:
Human powered generators are the best energy source for the rescue team as it doesn't require any lengthy time consuming resource but only the power of single human being. Just like fossil fuels, the human power is a kind of renewable energy source that does no harm to the environment and can be used whenever required.
Explanation:
Answer:
I would say false but I am not for sure
Hello, because there is not a circuit I'll explain the voltage divider and make an exercise, this way you can solve the problem using the method described here.
Answer with explanation:
A voltage divider uses the voltage distribution among components to find a voltage in a specific element of the circuit. If we have a source V1 connected to impedances Z1 and Z2 in series, we can use a voltage divider to find the voltage across Z1 or Z2 base on their value and the input voltage.
VZ1 = V1*Z1/(Z1+Z2)
VZ2 = V1*Z2/(Z1+Z2)
In the image, to find the voltage Vo across R2 we apply the following equation: Vo = (V1*R2)/(R1+R2).
To solve the exercise in the other image, we need to apply a voltage divider twice:
In-circuit 1 we are asked to find the voltage VAB that falls on R2 and R3 (the same voltage for both resistances because are in parallel), to do so we use a voltage divider using V1, R1 and RT where RT is the equivalent resistance RT = R2//R3 + R4, therefore, for circuit two VAC = (V1*R1)/(R1+RT). After finding VAC we apply voltage divider again to find VAB, see circuit 3, to do so we apply VAB = (VAC*R2//R3)/(R2//R3 + R4) = (VAC*R2//R3)/(RT)