Answer:
a) Check explanation for this
b)Rate law is ![Rate = \frac{k_{1}k_{4} }{k_{3}+ 2k_{4} } [H_{2} ]](https://tex.z-dn.net/?f=Rate%20%3D%20%5Cfrac%7Bk_%7B1%7Dk_%7B4%7D%20%20%7D%7Bk_%7B3%7D%2B%202k_%7B4%7D%20%20%7D%20%5BH_%7B2%7D%20%5D)
c) The rate does not depend on the concentration of CO₂
Explanation:
a) Elementary steps for the RWGS reaction:
- Dissociative adsorption of the H₂ Molecule
(Fast process)
- Reversible Reaction between CO₂ and H
(Fast Process)
- Slow dissociation of COOH into gaseous CO and absorbed OH
(Slow process)
- Fast hydrogenation of the OH to form H₂O
(Fast process)
b) Derivation of the rate law
We need to determine the rate law for H, OH and COOH because these are the intermediates for this reaction.
The steady state approximation is applied to a consecutive reaction with a slow first step and a fast second step (k1≪k2). If the first step is very slow in comparison to the second step, there is no accumulation of intermediate product.
Rate of consumption = Rate of production
For COOH:
Using steady state approximation
![\frac{d[COOH]}{dt} = 0](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BCOOH%5D%7D%7Bdt%7D%20%3D%200)
![k_{2} [CO_{2} ][H] = k_{3} [COOH] k_{4} [COOH]\\](https://tex.z-dn.net/?f=k_%7B2%7D%20%5BCO_%7B2%7D%20%5D%5BH%5D%20%3D%20k_%7B3%7D%20%5BCOOH%5D%20k_%7B4%7D%20%5BCOOH%5D%5C%5C)
![[COOH] = \frac{k_{2} [CO_{2} ][H]}{k_{3}k_{4} } \\](https://tex.z-dn.net/?f=%5BCOOH%5D%20%3D%20%5Cfrac%7Bk_%7B2%7D%20%5BCO_%7B2%7D%20%5D%5BH%5D%7D%7Bk_%7B3%7Dk_%7B4%7D%20%20%7D%20%5C%5C)
For H:
![\frac{d[H]}{dt} = 0](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH%5D%7D%7Bdt%7D%20%3D%200)
![k_{1}[H_{2}] = k_{2}[CO_{2} [H]+k_{5} [ OH][H]](https://tex.z-dn.net/?f=k_%7B1%7D%5BH_%7B2%7D%5D%20%3D%20k_%7B2%7D%5BCO_%7B2%7D%20%5BH%5D%2Bk_%7B5%7D%20%5B%20OH%5D%5BH%5D)
![[H]= \frac{k_{1}[H_{2}] }{k_{5}[OH] +k_{2}[CO_{2}]}\\](https://tex.z-dn.net/?f=%5BH%5D%3D%20%5Cfrac%7Bk_%7B1%7D%5BH_%7B2%7D%5D%20%20%7D%7Bk_%7B5%7D%5BOH%5D%20%2Bk_%7B2%7D%5BCO_%7B2%7D%5D%7D%5C%5C)
For OH:
![\frac{d[OH]}{dt} = 0](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BOH%5D%7D%7Bdt%7D%20%3D%200)
![k_{4} [COOH] = k_{5} [OH][H]\\\k[OH] = \frac{k_{4} [COOH]}{k_{5} H}\\](https://tex.z-dn.net/?f=k_%7B4%7D%20%5BCOOH%5D%20%3D%20k_%7B5%7D%20%5BOH%5D%5BH%5D%5C%5C%5Ck%5BOH%5D%20%3D%20%5Cfrac%7Bk_%7B4%7D%20%5BCOOH%5D%7D%7Bk_%7B5%7D%20H%7D%5C%5C)
The rate of the overall reaction is determined by the slowest step of the reaction. The slowest process is the dissociation of COOH
Therefore the overall rate of reaction is:
![Rate = k_{4} [COOH]\\](https://tex.z-dn.net/?f=Rate%20%3D%20k_%7B4%7D%20%5BCOOH%5D%5C%5C)
![Rate = k_{4} \frac{k_{2} [CO_{2} ][H]}{k_{3}k_{4} }\\Rate = k_{4} \frac{k_{2}[CO_{2}]\frac{k_{1}[H_{2}] }{k_{5}[OH] +k_{2}[CO_{2}]} }{k_{3}k_{4}}\\Rate = k_{4} \frac{k_{2}[CO_{2}]\frac{k_{1}[H_{2}] }{k_{5}\frac{k_{4}COOH }{k_{5}H } +k_{2}[CO_{2}]} }{k_{3}k_{4}}](https://tex.z-dn.net/?f=Rate%20%3D%20k_%7B4%7D%20%20%5Cfrac%7Bk_%7B2%7D%20%5BCO_%7B2%7D%20%5D%5BH%5D%7D%7Bk_%7B3%7Dk_%7B4%7D%20%20%7D%5C%5CRate%20%3D%20k_%7B4%7D%20%20%5Cfrac%7Bk_%7B2%7D%5BCO_%7B2%7D%5D%5Cfrac%7Bk_%7B1%7D%5BH_%7B2%7D%5D%20%20%7D%7Bk_%7B5%7D%5BOH%5D%20%2Bk_%7B2%7D%5BCO_%7B2%7D%5D%7D%20%20%7D%7Bk_%7B3%7Dk_%7B4%7D%7D%5C%5CRate%20%3D%20k_%7B4%7D%20%20%5Cfrac%7Bk_%7B2%7D%5BCO_%7B2%7D%5D%5Cfrac%7Bk_%7B1%7D%5BH_%7B2%7D%5D%20%20%7D%7Bk_%7B5%7D%5Cfrac%7Bk_%7B4%7DCOOH%20%7D%7Bk_%7B5%7DH%20%7D%20%20%2Bk_%7B2%7D%5BCO_%7B2%7D%5D%7D%20%20%7D%7Bk_%7B3%7Dk_%7B4%7D%7D)
Simplifying the equation above, the rate law becomes
![Rate = \frac{k_{1}k_{4} }{k_{3}+ 2k_{4} } [H_{2} ]](https://tex.z-dn.net/?f=Rate%20%3D%20%5Cfrac%7Bk_%7B1%7Dk_%7B4%7D%20%20%7D%7Bk_%7B3%7D%2B%202k_%7B4%7D%20%20%7D%20%5BH_%7B2%7D%20%5D)
c) It is obvious from the rate law written above that the rate of the RWBG reaction does not depend on the concentration of CO₂
Answer:
use Bluetooth if you have an unwired controller, but If its wired just hook it up.
Answer:
abrir candados y abrir puertas
Explanation:
The pressure drop of air in the bed is 14.5 kPa.
<u>Explanation:</u>
To calculate Re:

From the tables air property

Ideal gas law is used to calculate the density:
ρ = 
ρ = 1.97 Kg / 
ρ = 
R =
= 8.2 ×
/ 28.97×
R = 2.83 ×
atm / K Kg
q is expressed in the unit m/s
q = 1.24 m/s
Re =
Re = 2278
The Ergun equation is used when Re > 10,


= 4089.748 Pa/m
ΔP = 4089.748 × 3.66
ΔP = 14.5 kPa
The modulus of elasticity is 28.6 X 10³ ksi
<u>Explanation:</u>
Given -
Length, l = 5in
Force, P = 8000lb
Area, A = 0.7in²
δ = 0.002in
Modulus of elasticity, E = ?
We know,
Modulus of elasticity, E = σ / ε
Where,
σ is normal stress
ε is normal strain
Normal stress can be calculated as:
σ = P/A
Where,
P is the force applied
A is the area of cross-section
By plugging in the values, we get
σ = 
σ = 11.43ksi
To calculate the normal strain we use the formula,
ε = δ / L
By plugging in the values we get,
ε = 
ε = 0.0004 in/in
Therefore, modulus of elasticity would be:

Thus, modulus of elasticity is 28.6 X 10³ ksi