1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
15

Acredit report summarizes a person's Acredit score is measure of a person's as a borrower a factor that contributes to a person'

s credit score
Engineering
1 answer:
krok68 [10]3 years ago
4 0

Answer:

1) credit activity

2) trustworthiness

3) payment history

Explanation:

just checked on edg

You might be interested in
The reverse water-gas shift (RWGS) reaction is an equimolar reaction between CO2 and H2 to form CO and H2O. Assume CO2 associati
klasskru [66]

Answer:

a) Check explanation for this

b)Rate law is  Rate = \frac{k_{1}k_{4}  }{k_{3}+ 2k_{4}  } [H_{2} ]

c) The rate does not depend on the concentration of CO₂

Explanation:

a) Elementary steps for the RWGS reaction:

  • Dissociative adsorption of the H₂ Molecule

                 H_{2} $\xrightarrow{\text{k1}}$H + H   (Fast process)

  • Reversible Reaction between CO₂ and H

                \[ CO_{2} + H\mathrel{\mathop{\rightleftarrows}^{\mathrm{k2}}_{\mathrm{k3}}}COOH \] (Fast Process)

  • Slow dissociation of COOH into gaseous CO and absorbed OH

                COOH $\xrightarrow{\text{k1}}$ CO + OH (Slow process)

  • Fast hydrogenation of the OH to form H₂O

                   OH + H $\xrightarrow{\text{k5}}$H_{2} O (Fast process)

b) Derivation of the rate law

We need to determine the rate law for H, OH and COOH because these are the intermediates for this reaction.

The steady state approximation is applied to a consecutive reaction with a slow first step and a fast second step (k1≪k2). If the first step is very slow in comparison to the second step, there is no accumulation of intermediate product.

Rate of consumption = Rate of production

For COOH:

Using steady state approximation

\frac{d[COOH]}{dt} = 0

k_{2} [CO_{2} ][H] = k_{3} [COOH] k_{4} [COOH]\\

[COOH] = \frac{k_{2} [CO_{2} ][H]}{k_{3}k_{4}  } \\

For H:

\frac{d[H]}{dt} = 0

k_{1}[H_{2}] = k_{2}[CO_{2} [H]+k_{5} [ OH][H]

[H]= \frac{k_{1}[H_{2}]  }{k_{5}[OH] +k_{2}[CO_{2}]}\\

For OH:

\frac{d[OH]}{dt} = 0

k_{4} [COOH] = k_{5} [OH][H]\\\k[OH] = \frac{k_{4} [COOH]}{k_{5} H}\\

The rate of the overall reaction is determined by the slowest step of the reaction. The slowest process is the dissociation of COOH

Therefore the overall rate of reaction is:

Rate = k_{4} [COOH]\\

Rate = k_{4}  \frac{k_{2} [CO_{2} ][H]}{k_{3}k_{4}  }\\Rate = k_{4}  \frac{k_{2}[CO_{2}]\frac{k_{1}[H_{2}]  }{k_{5}[OH] +k_{2}[CO_{2}]}  }{k_{3}k_{4}}\\Rate = k_{4}  \frac{k_{2}[CO_{2}]\frac{k_{1}[H_{2}]  }{k_{5}\frac{k_{4}COOH }{k_{5}H }  +k_{2}[CO_{2}]}  }{k_{3}k_{4}}

Simplifying the equation above, the rate law becomes

Rate = \frac{k_{1}k_{4}  }{k_{3}+ 2k_{4}  } [H_{2} ]

c) It is obvious from the rate law written above that the rate of the RWBG reaction does not depend on the concentration of CO₂

7 0
3 years ago
How do i play Fortnite on controller?
neonofarm [45]

Answer:

use Bluetooth if you have an unwired controller, but If its wired just hook it up.

4 0
2 years ago
Read 2 more answers
Whats the purpose of the keyway
Nata [24]

Answer:

abrir candados y abrir puertas

Explanation:

4 0
2 years ago
Flow and Pressure Drop of Gases in Packed Bed. Air at 394.3 K flows through a packed bed of cylinders having a diameter of 0.012
devlian [24]

The pressure drop of air in the bed is  14.5 kPa.

<u>Explanation:</u>

To calculate Re:

R e=\frac{1}{1-\varepsilon} \frac{\rho q d_{p}}{\mu}

From the tables air property

\mu_{394 k}=2.27 \times 10^{-5}

Ideal gas law is used to calculate the density:

ρ = \frac{2.2}{2.83 \times 10^{-3} \times 394.3}

ρ = 1.97 Kg / m^{3}

ρ = \frac{P}{RT}

R = \frac{R_{c} }{M} = 8.2 × 10^{-5} / 28.97×10^{-3}

R = 2.83 × 10^{-3} m^{3} atm / K Kg

q is expressed in the unit m/s

q=\frac{2.45}{1.97}

q = 1.24 m/s

Re = \frac{1}{1-0.4} \frac{1.97 \times 1.24 \times 0.0127}{2.27 \times 10^{-5}}

Re = 2278

The Ergun equation is used when Re > 10,

\frac{\Delta P}{L}=\frac{180 \mu}{d_{p}^{2}} \frac{(1-\varepsilon)^{2}}{\varepsilon^{3}} q+\frac{7}{4} \frac{\rho}{d_{p}} \frac{(1-\varepsilon)}{\varepsilon^{3}} q^{2}

\frac{\Delta P}{L}=\frac{180 \times 2.27 \times 10^{-5}}{0.0127^{2}} \frac{(1-0.4)^{2}}{0.4^{3}} 1.24 +\frac{7}{4} \frac{1.97}{0.0127} \frac{(1-0.4)}{0.4^{3}} 1.24^{2}

= 4089.748 Pa/m

ΔP = 4089.748 × 3.66

ΔP = 14.5 kPa

4 0
3 years ago
A bar having a length of 5 in. and cross-sectional area of 0. 7 in.2 is subjected to an axial force of 8000 lb. If the bar stret
andrew11 [14]

The modulus of elasticity is 28.6 X 10³ ksi

<u>Explanation:</u>

Given -

Length, l = 5in

Force, P = 8000lb

Area, A = 0.7in²

δ = 0.002in

Modulus of elasticity, E = ?

We know,

Modulus of elasticity, E = σ / ε

Where,

σ is normal stress

ε is normal strain

Normal stress can be calculated as:

σ = P/A

Where,

P is the force applied

A is the area of cross-section

By plugging in the values, we get

σ = \frac{8000 X 10^-^3}{0.7}

σ = 11.43ksi

To calculate the normal strain we use the formula,

ε = δ / L

By plugging in the values we get,

ε = \frac{0.002}{5}

ε = 0.0004 in/in

Therefore, modulus of elasticity would be:

E = \frac{11.43}{0.004} \\\\E = 28.6 X 10^3 ksi

Thus, modulus of elasticity is 28.6 X 10³ ksi

6 0
2 years ago
Other questions:
  • Cng containers need to be inspected
    7·1 answer
  • What parts does the block contain?
    5·2 answers
  • A lake with a surface area of 525 acres was monitored over a period of time. During onemonth period the inflow was 30 cfs (ie. f
    5·1 answer
  • An uncovered swimming pool loses 1.0 inch of water off its 1,000 ft^2 surface each week due to evaporation. The heat of vaporiza
    14·1 answer
  • The air standard efficiency ofan Otto cycle compared to diesel cycle for thie given compression ratio is: (a) same (b) less (c)
    12·1 answer
  • A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed to a length of 0.50 m and a mass of 2.2 kg is p
    14·2 answers
  • If a and b are both int arrays, then a b; will
    10·1 answer
  • Help me is it a b c or d?
    14·1 answer
  • Pointttttttttttttssssssssssss
    12·1 answer
  • Which one of the following best defines hardness: (a) energy absorbed by a material when an object strikes its surface, (b) resi
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!