1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kaylis [27]
3 years ago
11

Determine the angular acceleration of the uniform disk if (a) the rotational inertia of the disk is ignored and (b) the inertia

of the disk is considered. The system is released from rest, the cord does not slip on the disk, and bearing friction at O may be neglected. The angular acceleration is positive if counterclockwise, negative if clockwise.
Engineering
1 answer:
lukranit [14]3 years ago
6 0

Answer:

α = 7.848 rad/s^2  ... Without disk inertia

α = 6.278 rad/s^2  .... With disk inertia

Explanation:

Given:-

- The mass of the disk, M = 5 kg

- The right hanging mass, mb = 4 kg

- The left hanging mass, ma = 6 kg

- The radius of the disk, r = 0.25 m

Find:-

Determine the angular acceleration of the uniform disk without and with considering the inertia of disk

Solution:-

- Assuming the inertia of the disk is negligible. The two masses ( A & B )  are hung over the disk in a pulley system. The disk is supported by a fixed support with hinge at the center of the disk.

- We will make a Free body diagram for each end of the rope/string ties to the masses A and B.

- The tension in the left and right string is considered to be ( T ).

- Apply newton's second law of motion for mass A and mass B.

                      ma*g - T = ma*a

                      T - mb*g = mb*a

Where,

* The tangential linear acceleration ( a ) with which the system of two masses assumed to be particles move with combined constant acceleration.

- g: The gravitational acceleration constant = 9.81 m/s^2

- Sum the two equations for both masses A and B:

                      g* ( ma - mb ) = ( ma + mb )*a

                      a =  g* ( ma - mb ) / ( ma + mb )

                      a = 9.81* ( 6 - 4 ) / ( 6 + 4 ) = 9.81 * ( 2 / 10 )

                      a = 1.962 m/s^2  

- The rope/string moves with linear acceleration of ( a ) which rotates the disk counter-clockwise in the direction of massive object A.

- The linear acceleration always acts tangent to the disk at a distance radius ( r ).

- For no slip conditions, the linear acceleration can be equated to tangential acceleration ( at ). The correlation between linear-rotational kinematics is given below :

                     a = at = 1.962 m/s^2

                     at = r*α      

Where,

           α: The angular acceleration of the object ( disk )

                    α = at / r

                    α = 1.962 / 0.25

                    α = 7.848 rad/s^2                                

- Take moments about the pivot O of the disk. Apply rotational dynamics conditions:

             

                Sum of moments ∑M = Iα

                 ( Ta - Tb )*r = Iα

- The moment about the pivots are due to masses A and B.

 

               Ta: The force in string due to mass A

               Tb: The force in string due to mass B

                I: The moment of inertia of disk = 0.5*M*r^2

                   ( ma*a - mb*a )*r = 0.5*M*r^2*α

                   α = ( ma*a - mb*a ) / ( 0.5*M*r )

                   α = ( 6*1.962 - 4*1.962 ) / ( 0.5*5*0.25 )

                   α = ( 3.924 ) / ( 0.625 )

                   α = 6.278 rad/s^2

You might be interested in
BOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
sergejj [24]

Answer:

BOO

Explanation:

8 0
2 years ago
A two-dimensional flow field described by
Oduvanchick [21]

Answer:

the answer is

Explanation:

<h2>  We now focus on purely two-dimensional flows, in which the velocity takes the form </h2><h2>u(x, y, t) = u(x, y, t)i + v(x, y, t)j. (2.1) </h2><h2>With the velocity given by (2.1), the vorticity takes the form </h2><h2>ω = ∇ × u = </h2><h2> </h2><h2>∂v </h2><h2>∂x − </h2><h2>∂u </h2><h2>∂y </h2><h2>k. (2.2) </h2><h2>We assume throughout that the flow is irrotational, i.e. that ∇ × u ≡ 0 and hence </h2><h2>∂v </h2><h2>∂x − </h2><h2>∂u </h2><h2>∂y = 0. (2.3) </h2><h2>We have already shown in Section 1 that this condition implies the existence of a velocity </h2><h2>potential φ such that u ≡ ∇φ, that is </h2><h2>u = </h2><h2>∂φ </h2><h2>∂x, v = </h2><h2>∂φ </h2><h2>∂y . (2.4) </h2><h2>We also recall the definition of φ as </h2><h2>φ(x, y, t) = φ0(t) + Z x </h2><h2>0 </h2><h2>u · dx = φ0(t) + Z x </h2><h2>0 </h2><h2>(u dx + v dy), (2.5) </h2><h2>where the scalar function φ0(t) is arbitrary, and the value of φ(x, y, t) is independent </h2><h2>of the integration path chosen to join the origin 0 to the point x = (x, y). This fact is </h2><h2>even easier to establish when we restrict our attention to two dimensions. If we consider </h2><h2>two alternative paths, whose union forms a simple closed contour C in the (x, y)-plane, </h2><h2>Green’s Theorem implies that   </h2><h2> </h2><h2> </h2><h2> </h2><h2> </h2><h2> </h2><h2></h2><h2></h2>
5 0
3 years ago
Tech a says that the weight of the flywheel smoothest out the engines power pulses. Tech B says that the flexplate and torque co
lakkis [162]

Answer:

both statement is correct

Explanation:

Flywheel engine uses to reduce fluctuations.

And                                                                

FlexPlate is a metal disk that connects the output from the engine to the input of the torque converter. This will replace the flywheel

so that both statement is correct

4 0
3 years ago
You are riding in an elevator that is going up at 10 ft/s. You are holding your cell phone 5 ft above the floor when it suddenly
Luba_88 [7]

Answer:

It falls at the same speed in both cases.

Explanation:

If I were standing still the phone would be in free fall after slipping out of my hand.

I set a frame of reference with origin on the ground and the positive Y axis pointing up.

It would slip at t0 = 0, from a position Y0 = 5 ft, with a speed of Vy0 = 0.

It would be subject to an gravitational acceleration of -32.2 ft/s^2.

Since acceleration is constant:

Y(t) = Y0 + Vy0 * t + 1/2 * 4 * t^2

When it hits the floor at t1 it will be at Y(t1) = 0

0 = 5 + 0 * t1 - 16.1 * t1^2

16.1 * t1^2 = 5

t1^2 = 5 / 16.1

t1 = \sqrt{0.31} = 0.55 s

If the elevator is standing still it would take 0.55 s to hit the ground.

Now, if the elevator is moving up at 10 ft/s.

The frame of reference will have its origin at the place the floor of the elevator is at t = 0, and stay there as the elevetor moves. The floor of trhe elevator will have a position of Ye = 10 * t

Vy0 = 10 ft/s because it will be moving initially at the same speed as the elevator.

And it will hit the floor of the elevator not at 0, but at

Ye = 10 * t2

So:

10 * t2 = 5 + 10 * t2 - 16.1 * t2^2

0 = 5 - 16.1 * t2^2

16.1 * t1^2 = 5

t1^2 = 5 / 16.1

t1 = \sqrt{0.31} = 0.55 s

It falls at the same speed in both cases.

4 0
3 years ago
Think about a packed lunch and the
Mazyrski [523]

Answer:

They are combination structures made up of solid, and shell structures.

Explanation:

Thinking of a lunch pack which is shaped as a solid bag made up of different compartments to hold food, what comes to mind are;

1. The solid structure: This is seen in the form of the bag which has solid makeup.

2. The shell structure: This is seen in the different compartments holding the different types of foods. Shell structures are usually in the form of containers made to hold something in.

4 0
3 years ago
Other questions:
  • Which statement about tensile stress is true? A. Forces that act perpendicular to the surface and pull an object apart exert a t
    9·1 answer
  • A manufacturer makes two types of drinking straws: one with a square cross-sectional shape, and the other type the typical round
    9·1 answer
  • Consider a simple ideal Rankine cycle and an ideal regenerative Rankine cycle with one open feedwater heater. The two cycles are
    15·1 answer
  • What are 3 reasons why small businesses are an important part of the American economy?
    9·2 answers
  • An inductor (L = 400 mH), a capacitor (C = 4.43 µF), and a resistor (R = 500 Ω) are connected in series. A 44.0-Hz AC generator
    11·1 answer
  • A thermoelectric refrigerator is powered by a 16-V power supply that draws 2.9 A of current. If the refrigerator cools down 3.1
    11·1 answer
  • Need Answers Quick!!!! What is the purpose of structural components such as frames, bearings, and mounts? A.) Connect two rotati
    9·1 answer
  • If a heat engine has an efficiency of 30% and its power output is 600 W, what is the rate of heat input from the combustion phas
    10·1 answer
  • Metal and dirt are not considered contaminants to oll.<br> A) O True<br> B) O False
    13·2 answers
  • A bakery wants to determine how many trays of doughnuts it should prepare each day. Demand is normal with a mean of 15 trays and
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!