Answer: B. Nodes
Explanation:
Standing waves (so called because they seem to be immobile) occur when two waves interfere with the same frequency, amplitude but with different direction, along a line with a phase difference of half wavelength.
In these waves there are two types of points:
The <u>nodes</u>, which are points that remain motionless or stationary and do not vibrate. They are <u>due to the destructive interference of both waves when they meet. </u>
The antinodes, which are points that vibrate with a maximum vibration amplitude. They are <u>due to the non-destructive interference of both waves</u>.
Answer:
a) Frope= 71.7 N
b) Frope=6.7 N
Explanation:
In the figure the skier is simulated as an object, "a box".
a) At constant velocity we can say that the object is in equilibrium, so we apply the Newton's first law:
∑F=0
Frope=w*sen6.8°
Frope=71.71N
Take into account that w is the weight that is calculated as mass per gravitiy constant:
w=m*g


b) In this case the system has an acceleration of 0.109m/s2. Then, we apply Newton's second law of motion:
F=m*a
F=61.8Kg*0.109m/s2
Frope=6.73N
As the source approaches you, the sound waves are compressed, so
the pitch of the sound is higher than what the source is actually emitting.
Then, after it passes you and begins moving away, the sound waves
are stretched, so the pitch of the sound is lower than what the source
is actually emitting.
The people living around the equator experience acceleration. Acceleration is the change in speed or/and direction. When on a rotating body, the speed does not change it is only the direction that changes as it rotates.When on a rotating body you do not have to change speed but only direction. In a normal situation when you are traveling on a circle you will never have a straight line.