Answer:
B. 0.98 m/s
Explanation:
This is because we use the simple formula of dividing the distance by the time. In which case would be 13.69m (distance) divided by 13.92s (time) and we will get 0.983477011 or 0.98m/s (your answer)
I hope this made sense and hoped it helped. Good luck with your test luv :)
Its VENUS because the planet is basicily a hot planet
The block has maximum kinetic energy at the bottom of the curved incline. Since its radius is 3.0 m, this is also the block's starting height. Find the block's potential energy <em>PE</em> :
<em>PE</em> = <em>m g h</em>
<em>PE</em> = (2.0 kg) (9.8 m/s²) (3.0 m)
<em>PE</em> = 58.8 J
Energy is conserved throughout the block's descent, so that <em>PE</em> at the top of the curve is equal to kinetic energy <em>KE</em> at the bottom. Solve for the velocity <em>v</em> :
<em>PE</em> = <em>KE</em>
58.8 J = 1/2 <em>m v</em> ²
117.6 J = (2.0 kg) <em>v</em> ²
<em>v</em> = √((117.6 J) / (2.0 kg))
<em>v</em> ≈ 7.668 m/s ≈ 7.7 m/s
Answer:
A
Explanation:
• Nina experiences a force equal to f.
I believe that it is the first one just a guess tho. So don't trust me, just in case