Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
Emissivityis a measure of how much thermal radiation a body emits to its environment. On the other hand we have that reflectivity is a measure of how much is reflected, and transmissivity is a measure of how much passes through the object. If a body is required to be ideally reflective to its maximum efficiency, the body should NOT have the property of transmissivity or emissivity. Therefore it should be 0 its emittivity.
Correct answer would be A : ZERO.
I'm pretty sure the moon would be a crescent within the 10 day period because it takes about 28 days for the moon to go through the different stages.
Answer:
The mass rate of the cooling water required is: 
Explanation:
First, write the energy balance for the condensator: The energy that enters to the equipment is the same that goes out from it; consider that there is no heat transfer to the surroundings and kinetic and potential energy changes are despreciable.

Where w refers to the cooling water and s to the steam flow. Reorganizing,

Write the difference of enthalpy for water as Cp (Tout-Tin):

This equation will let us to calculate the mass rate required. Now, let's get the enthalpy and Cp data. The enthalpies can be read from the steam tables (I attach the tables I used). According to that,
and
can be calculated as:
.
The Cp of water at 25ºC (which is the expected average temperature for water) is: 4.176
. If the average temperature is actually different, it won't mean a considerable mistake. Also we know that
, so let's work with the limit case, which is
to calculate the minimum cooling water mass rate required (A higher one will give a lower temperature difference as a result). Finally, replace data:

In my opinion, i think the first one is the best one since we're cutting down on paper wasted in mails when its better to do it online.
"paying bills online instead of sending paper through mail"