Answer:
carbon mass = 12.01g/mol
hydrogen mass = 1.01g/mol
4 carbon atoms and 10 hydrogen so
12.01 x 4 + 1.01 x 10
48.04g/mol + 10.10g/mol
= 58.14g/mol
1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1
We must to know:
Cm = molarity = niu / Vs, when the niu = no. of moles and Vs = Volume of solution
the no. niu = mass / molecular mass of substance
molecular mass of C8H8 = 12x8+8x1 = 104 g/mol
=> niu = 1,5 / 104 = 0,0144 moles C8H8
=> Cm = 0,0144/0,225 = 0,06 mol/L
Cmm = molality = niu (C8H8) / mass of solvent (kg)
=> p = mass / V => mass (solvent) = p x V
=> 225 x 1,02 = 229,5 g solvent = 0,2295 kg solvent
=> Cmm = 0,0144 / 0,229,5 = 0,063