Answer: 33.35 minutes
Explanation:
A(t) = A(o) *(.5)^[t/(t1/2)]....equ1
Where
A(t) = geiger count after time t = 100
A(o) = initial geiger count = 400
(t1/2) = the half life of decay
t = time between geiger count = 66.7 minutes
Sub into equ 1
100=400(.5)^[66.7/(t1/2)
Equ becomes
.25= (.5)^[66.7/(t1/2)]
Take log of both sides
Log 0.25 = [66.7/(t1/2)] * log 0.5
66.7/(t1/2) = 2
(t1/2) = (66.7/2 ) = 33.35 minutes
Answer:
Effective communication helps decision makers by gathering and providing the information to the right person on right time. Communication performs as a motivator to the employees by notifying the employees about the job task, process of carrying and how it could be done better.
Answer:
Output voltage equation is 
Explanation:
Given:
dc gain
dB
Input signal 
Now convert gain,

DC gain at frequency
is given by,



At zero frequency above equation is written as,


Now we write output voltage as input voltage,

Therefore, output voltage equation is 
Complete Question
The complete question is shown on the first uploaded image
Answer:
The probability is 
Explanation:
The explanation is shown on the second and third uploaded image
Answer:
The maximum power that can be generated is 127.788 kW
Explanation:
Using the steam table
Enthalpy at 20 bar = 2799 kJ/kg
Enthalpy at 2 bar = 2707 kJ/kg
Change in enthalpy = 2799 - 2707 = 92 kJ/kg
Mass flow rate of steam = 5000 kg/hr = 5000 kJ/hr × 1 hr/3600 s = 1.389 kg/s
Maximum power generated = change in enthalpy × mass flow rate = 92 kJ/kg × 1.389 kg/s = 127.788 kJ/s = 127.788 kW